IAC-25-E1.9.18,97788

ESTABLISHING A CULTURE OF DRINKING IN SPACE: REALIZING A BEER EXPERIENCE IN SPACE EQUIVALENT TO THAT ON EARTH

Taiko Kawakamia*, Taichi Yamazakib

^a General Manager, ASTRAX, Inc., 1-1-4-301 Mukogaoka, Bunkyo, Tokyo, Japan 113-0023, taiko.kawakami@astrax.space
 ^bCEO and Astronaut, ASTRAX, Inc., 2-23-17 Komachi, Kamakura, Kanagawa, 248-0006, Japan, taichi.yamazaki@astrax.space
 * Corresponding Author

Abstract

As space travel transitions from exploration to tourism, humanity is entering an era where people will reside in space. In this new age, it is essential not only to establish survival infrastructure but also to develop technologies, services, and cultures that enable a comfortable and fulfilling lifestyle in space. Enhancing food and beverage experiences is a crucial part of this effort. However, research on alcohol consumption in microgravity remains largely unexplored, and the "culture of drinking in space" has yet to be established.

ASTRAX is working to develop and commercialize beer that can be consumed in space, aiming to provide the first commercial space drinking service in the private space travel era. The goal is not just to make drinking alcohol in space safe but to replicate the experience of enjoying an ice-cold beer from a mug, just like on Earth. This challenge extends beyond technological development and is directly connected to establishing a new lifestyle in future space societies.

In microgravity, the movement of liquids, the balance of carbonation, and the mouthfeel of beer differ significantly from those on Earth. However, the social and cultural significance of drinking remains unchanged. The act of toasting in space could become a new form of communication in future space societies. Additionally, it is essential to explore how alcohol consumption contributes to psychological well-being during long-term space missions.

Furthermore, by exploring unique drinking styles that can only exist in space, this research could lead to the development of not only beer but also a broader range of space beverage technologies, services, and cultures—including wine, cocktails, and soft drinks. This study will examine the cultural and technical challenges of drinking in space and consider how drinking services and culture may take root in future space societies.

As private space travel advances, the act of enjoying beverages will become an essential aspect of space hospitality. Through this research, we aim to establish a new lifestyle in space and bridge the culinary and beverage cultures between Earth and space.

Keywords: Space Beer, Drank in Space, ASTRAX, Space Travel, Space Hospitality

1. Introduction

Commercial space travel began in earnest in 2021, and in 2022, approximately 30 private persons reached space annually, surpassing the number of astronauts dispatched as part of national projects. Additionally, companies like SpaceX announcing plans for Mars colonization starting in 2026, space is undergoing a major shift from being a venue for exploration and scientific research to one for tourism, stays, and ultimately, 'living.'

Until now, space has been a place reserved only for a select few trained astronauts. However, an era is already dawning where ordinary people will travel to space. ASTRAX believes that in such an era, merely providing a "survivable environment" will be insufficient; comfortable, enriching living conditions and hospitality will be paramount.

From now on, it is necessary to consider hospitality in space that is similar to, or even unique to, we experience in our lives on Earth.

Among these, drinking has long been established as part of the culture on Earth, serving social, celebratory, and psychological relaxation purposes. This universal presence is considered an important element for people's comfort in space as well, and is deemed necessary for space hospitality.

This study examines the establishment of drinking culture in space society, with a particular focus on beer.

2. Background

2.1 Experiments on Drinking Beverages in Space

Attempts directly targeting "drinking beverages in space" have been extremely limited to date, including NASA's 1985 cola experiment, the Australian Vostok

IAC-25- E1.9.18 Page 1 of 23

team's development of a space-use beer container, and French Mumm's zero gravity champagne "Grand Cordon Stellar." Reference paper (74)

Meanwhile, research and development into "making beverages in space" is gaining momentum. Alongside barley cultivation experiments by Sapporo and Budweiser, and fermentation studies under microgravity conditions at the University of Florida, Texas-based Starbase Brewing successfully conducted germination and fermentation experiments aboard the International Space Station (ISS) in 2025. These initiatives are laying the technological groundwork for realizing a drinking culture in space.

2.1.1 Experiment on Drinking Beverages in Space

During the STS-51-F mission aboard the Space Shuttle Challenger in 1985, Coca-Cola and Pepsi each conducted experiments using their own dispensers to drink carbonated beverages in space. This attempt aimed to observe how carbonation behaves in microgravity. However, it revealed problems such as the difficulty in separating the liquid and gas components, and the inability to burp naturally as one would on Earth. This is an important finding that demonstrates the existence of technical challenges not merely related to personal preference, but to the very act of drinking carbonated beverages comfortably in space.

Subsequently, the Australian team developing "Vostok Beer" devised a special container capable of controlling foam formation even in zero gravity. Tests during zero gravity flights confirmed that the beer could actually be sipped without turning entirely into foam. This demonstrated that the experience of drinking in space is not merely a pipe dream, but achievable through engineering ingenuity.

Additionally, in 2022, French champagne producer Mumm unveiled a special champagne called "Grand Cordon Stellar." This was not merely a publicity stunt, but a technical challenge enabling the pouring of liquid into a glass, the generation of bubbles, and the actual act of toasting under microgravity conditions. The zerogravity flight demonstrated that a toast could indeed be performed, proving that champagne's signature festive presentation could be enjoyed in weightlessness. However, the glasses used were the size of traditional Japanese sake cups.

2.1.2 Experiments to Produce Beverages in Space

While attempts to "actually drink in space" have been limited thus far, research into "producing" beer and alcoholic beverages in space has been actively pursued in recent years.

From 2008 to 2009, Sapporo conducted a limitededition brew on Earth using barley cultivated aboard the International Space Station, offering the resulting beer, named "Space Barley," through a lottery. This initiative generated significant buzz by opting for a limited lottery distribution rather than commercial sale, demonstrating a real example of "brewing beer from ingredients grown in space." [104]

In 2017, Budweiser sent barley seeds to the International Space Station to study germination and genetic changes, advancing foundational research with an eye toward future cultivation on Mars.[105]

Plus, in 2024, the University of Florida conducted yeast fermentation experiments in a simulated microgravity environment, confirming unique behaviors such as increased fermentation rates and suppression of aromatic compounds.[106]

A recent example is the two experiments conducted by Texas-based Starbase Brewing on the International Space Station in 2025. One was the OASIS experiment, which involved germinating barley using simulated Martian soil and spent grain. The other was the MicroBrew-1 experiment, which involved mixing unfermented wort with yeast to initiate fermentation. Both experiments were successful, marking a significant step in demonstrating the potential for cultivation and fermentation in space.

These efforts are laying the technological groundwork for establishing a drinking culture in space.

Incidentally, alcohol is prohibited aboard the International Space Station, operated by 15 nations, due to concerns that its volatility could adversely affect life support systems. (104) Establishing a drinking culture in space will eventually require addressing this issue as well.

2.2 The Evolution of Drinking Culture

2.2.1 The History of Global Drinking Culture

Alcohol is one of the oldest luxury items, having accompanied people for approximately 13,000 years. It emerged as a universal cultural element across the globe—for celebrations, rites of passage, socializing, and psychological relaxation—and has continuously existed and evolved. Beer-based beverages, in particular, developed independently worldwide from ancient Egypt to Africa, Asia, and South America, as they arise naturally wherever the technology to ferment grains exists. Alongside wine and distilled spirits, they have been passed down as a shared cultural foundation for people, while also possessing distinct regional characteristics.[109]

Drinking alcohol has been a universal cultural element deeply rooted in society since ancient times, though

IAC-25- E1.9.18 Page 2 of 23

exceptions exist, such as Islamic cultures that prohibit alcohol for religious reasons. Nevertheless, in many regions, alcohol has played an indispensable role in social gatherings and ceremonies.

2.2.2 Current Status of Alcohol Consumption in Space

Meanwhile, the current prohibition on alcohol consumption aboard the International Space Station is based primarily on technical and medical constraints, not religious or ethical reasons. Alcohol, as a volatile substance, could adversely affect life support systems. Concerns exist regarding health risks in microgravity and reduced emergency response capabilities, too. Russia (formerly the Soviet Union) once permitted small amounts of cognac aboard stations like Mir. This history indicates that the prohibition stems not from cultural custom but from institutional controls that have been strengthened in recent years. (110)

Therefore, abstinence in space is not a cultural rejection but merely a temporary technical constraint. Once overcome, drinking culture is highly likely to take root within space society as well.

3. Technical Challenges of Drinking Alcohol in Space and ASTRAX's Approach

3.1 Technical Challenges

Drinking beer in space is considered necessary for overcoming several technical challenges. First, the behavior of liquids changes significantly in a zero gravity environment. On Earth, foam and liquid separate due to gravity, but in zero gravity, separation does not occur, making the entire drink prone to becoming full of foam.

Moreover, the liquid itself becomes ball-like and cannot flow naturally from conventional containers like mugs or glasses into the mouth. Therefore, the development of specialized containers (bottles or glasses) utilizing capillary action is essential.

Additionally, due to limited refrigeration capacity aboard spacecraft, achieving "cold beer" requires developing energy-efficient cooling systems and new cooling methods that utilize the extreme temperature variations of the space environment. The effects on human health are also a critical challenge. In microgravity, carbon dioxide does not separate in the stomach, making bloating more likely, and alcohol metabolism and health risks require even more careful evaluation than on Earth.

These issues have gradually become apparent through several past experiments. NASA's 1985 cola experiment aboard the Space Shuttle Challenger first demonstrated that carbonated beverages do not naturally separate in microgravity, leading to difficulty drinking and a feeling of bloating.

Subsequently, the Australian Vostok team developed a special container capable of controlling foam formation even in zero gravity, and successfully drank beer during a zero gravity flight.

In 2017, French champagne producer Mumm unveiled the "Grand Cordon Stellar," enabling champagne toasts in zero gravity through the use of a special glass.

These examples are primarily positioned as technical challenges, but they symbolize not merely drinking as a luxury item, but rather "comfortable living" in space, and further demonstrate the cultural aspect of being able to "toast in space."

3.2 ASTRAX Initiatives

ASTRAX has been conducting research and development since 2021 with the goal of realizing the experience of drinking a cold beer from a beer mug in space, just like on Earth.

3.2.1 Technology Development

We are advancing measures for a zero-gravity-compatible beer mug utilizing capillary action and progressing with prototype development for a glass inspired by space coffee cups. Additionly, as a preliminary step to drinking beer from the mug, we are considering the development of a space beer dispenser.

3.2.2 Cultural Initiatives

The goal is not merely to solve technical challenges, but to create a new form of communication: "toasting in space."

3.2.3 Verification Plan

The developed servers and the beer mug will be validated for effectiveness through demonstration experiments conducted by zero gravity flights.

3.2.4 Product Utilization and Expansion

These initiatives utilize existing products from Sakai Kashi Brewery in Sakai Town, Ibaraki Prefecture, Japan, as the actual beer. Moving forward, preparations are underway to expand flavor variations and label designs, enabling the provision of a more diverse "space beer experience."

4. Space Dining Hospitality

Thus, while challenges remain significant, efforts advancing worldwide mean that "drinking beer in space" is no longer a pipe dream but is steadily progressing

IAC-25- E1.9.18 Page 3 of 23

toward reality. ASTRAX's attempt is also a pioneering challenge that will pioneer the future of the space hospitality industry. (For details, see Beer 81 and Carbonated 74)

ASTRAX defines 'space dining hospitality' as activities that go beyond mere nutritional intake in the unique environment of space, bringing comfort, enjoyment, and cultural connection to persons through food and drink. The experience of 'drinking beer in space' symbolizes this. The moment of sharing a toast with companions in zero gravity is, physically, merely the act of consuming a beverage. Yet for space travelers, it becomes a "ritual to reclaim personhood," supporting psychological wellbeing and forging social bonds.

5. Discussion

5.1 Cultural Continuity and Quality of Life

The culture of drinking alcohol is one of the oldest indulgences passed down through persons for over 13,000 years. Interestingly, it emerged independently in various regions around the world and has continued to evolve. Beer, wine, distilled spirits—while their forms vary by region, they have consistently played vital roles in celebrations, rites of passage, and also everyday gatherings. This universality attests to persons' pursuit of "enjoyment" and "emotional richness" through drinking, regardless of environment.

Humans venturing into space continuing this culture becomes a symbolic endeavor that transcends mere entertainment, serving to "connect living on Earth with living in space."

For example, Japan's 'izakaya culture' exemplifies this. The place where we enjoy delicious drinks and food together under red lanterns after work is a cultural element that nurtures relationships and adds color to daily life, not merely replenishing nutrients. except Japan, bars where persons interact and relax over drinks are part of daily life in many regions.

Similarly, in space, drinking occasions will likely symbolize "living." Among these, the act of "toasting" is one custom that succinctly represents a culture passed down universally across the world. Toasting is seen not only at everyday meals with friends or celebrations, but also in formal ceremonies like weddings and in memorial services as a "tribute toast." In other words, toasting has universally served the role of confirming bonds between persons and sharing life's milestones and memories.

A toast shared in space will also provide a feeling that life continues, while symbolizing how people from different countries and cultures respect one another and live together. This should become an important step toward building peace and coexistence in space society.

5.2 Socializing and Communication

Since ancient times, drinking has naturally brought persons together. Around the world, at banquets, networking events, and home parties, the very act of sharing drinks serves as a lubricant for conversation, temporarily leveling the playing field between persons of different positions and backgrounds. Japan has the term "nomi(drinking in Japanese)-nication," succinctly expressing how drinking occasions have contributed to building relationships and fostering trust.

In space, the shared experience of drinking together will likely become an important means of facilitating interaction among crew members. In the future, it is expected that many commercial spacecraft will persons of different nationalities and ethnicities, who will share extended periods of time together. In such situations, drinking alcohol can serve as an opportunity to ease tension, promote conversation, and naturally deepen mutual understanding.

In other words, drinking alcohol functions as a means to bring persons closer together even in space, contributing to the establishment and maintenance of relationships among persons within closed environments.

5.3 Contributions to Mental Health

Maintaining a balance between tension and relaxation is essential for people to live healthily over long periods. In environments as closed and isolated as outer space, this balance is easily disrupted, making psychological stress prone to accumulate. Consequently, space agencies have introduced diverse measures to support crew mental health, including exercise, nutritional management, recreation, and communication with Earth. While these initiatives have proven effective to some extent, they essentially remain "functional care designed to prevent interference with mission execution." In that sense, on Earth, the act of taking a sip of cold beer after work can be understood, at least in my own experience, as more than the mere consumption of alcohol. It functions as a rewarding experience—a means of self-appreciation. The physical sensation as it passes down the throat, combined with the mild sense of liberation brought about by slight intoxication, contributes to the release of tension and adds a sense of enrichment to daily life. In this way, drinking beer acquires intrinsic value as a form of pleasure. By extension, in a space environment, access to a beverage that allows one to reward oneself after completing a mission—a moment to affirm, "Good job today"-could provide a significant source of psychological support.

Alcohol consumption, therefore, should not be regarded solely as a means of coping with stress, but rather as an opportunity to create "time for self-care." The presence of such rewards may render life in space

IAC-25- E1.9.18 Page 4 of 23

more human and more fulfilling. Accordingly, drinking can be positioned as one potential measure to support psychological well-being in space. By providing experiences of "mental relaxation" and "self-reward" that conventional functional care cannot fully address, it may contribute significantly to stress reduction and the maintenance of motivation during long-duration missions. In this sense, it could become an essential element in the evolution of space life from mere survival toward a "more human mode of living."

5.4 Spillover Effects of Technological Development

Realizing the act of "pouring a chilled beer into a glass and taking a satisfying sip in space" requires far more than simply designing a suitable container. It necessitates solutions such as mechanisms to separate liquid and gas, methods to control the movement of carbon dioxide under zero gravity, and technologies to achieve efficient cooling with minimal energy. Overcoming these challenges would generate innovations that extend well beyond the enjoyment of beer, contributing to a more comfortable and safer life in space.

For instance, if carbonated beverages can be consumed safely, the same technologies could be applied to water, nutritional drinks, and other liquids, thereby expanding dietary variety. Similarly, if volatile liquids can be handled safely, the applications would extend not only to beverages but also to medical storage and environmental stability aboard spacecraft, ultimately enhancing overall safety.

Moreover, such technologies would also prove valuable on Earth. Energy-efficient cooling systems and methods for controlling liquids could be adapted for emergency equipment in disaster situations, or for sustaining life in resource-limited environments such as polar regions and remote areas. In other words, while the challenge of "drinking beer in space" may appear to be born from a sense of playfulness, it in fact holds the potential to drive technological innovation that broadly enriches human life

5.5 A Perspective on Service Development

ASTRAX's initiative to develop space beer began with a simple, deeply human desire: "to enjoy a perfectly chilled beer in space, poured into a beer mag with the ideal golden ratio of three parts foam to seven parts liquid, and to take a satisfying sip." This starting point clearly differs from conventional "research for the sake of research." Rather than focusing solely on experiments or technical demonstrations, the approach is characterized by building technologies in a reverse manner—starting from the actual experience people wish to have and then developing the necessary means to make it possible.

In this way, beginning with human dreams and desires forms the foundation of ASTRAX's service development philosophy. In service creation, what is most important is first to identify what people truly wish to do (their needs) and then to combine the technologies required to fulfill those desires. Space beer serves as a concrete example of this approach: by thinking from a human-centered perspective, research does not become an end in itself but instead connects directly to practical value. Because it is based on real human needs, the outcome is a product that will indeed be used.

ASTRAX's challenge of developing space beer thus represents more than the pursuit of a preference. It stands as a model case demonstrating that an approach grounded in human dreams—rather than abstract objectives—will be essential for the future of the space industry.

5.6 Perspectives Required for Service Provision

In order to develop space beer as an actual service, it is necessary to go beyond simply "making it drinkable in space" and to consider a wide range of contexts and formats

First, it is necessary to make it actually possible to drink beer in space. This involves efforts to establish implementations such as containers, carbonation control, and cooling technologies, so that space travelers and long-term residents can drink safely.

Second, it is important to provide experiences that allow people to feel space while remaining on Earth. For example, events where participants enjoy beer with zero gravity simulations or in spaces designed to resemble spacecraft could serve as means to make space feel more familiar.

Third, there is the direction of reproducing the same way of drinking as on Earth. By making it possible in space to toast with beer mugs or to maintain the balance between foam and liquid, travelers would be able to obtain a sense of reassurance and continuity with daily life

Fourth, creating ways of drinking unique to space is also one perspective. In a microgravity environment, phenomena occur that cannot be experienced on Earth, such as foam forming into spheres and floating. By designing such phenomena positively as part of the enjoyment, it becomes possible to provide value unique to space.

Finally, it can also be considered to reimport new ways of drinking that are born in space back to Earth. For example, by commercializing glasses that simulate the experience of microgravity, or new beverage styles that apply phenomena occurring in space, the space experience could be shared more widely on Earth.

In this way, the service provision of space beer can be organized into five directions: (1) realization in space, (2) simulated experiences on Earth, (3) reproduction of

IAC-25- E1.9.18 Page 5 of 23

Earth-style drinking, (4) creation of space-unique styles, and (5) reimportation.

This framework can be better understood by making an analogy with the development of sushi culture. That is, eating sushi in Japan (the original experience), tasting Japanese-style sushi abroad (the imitative experience), the creation of new forms such as the California roll in local contexts (unique creation), and their reimportation into Japan (re-establishment).

These considerations on space beer do not remain within the framework of mere product development, but can provide a basis and reference framework for the future development of "space food and beverage hospitality."

6. Conclusion

As demonstrated in this study, alcohol consumption has the capacity to support psychological well-being, foster social interaction, and sustain cultural continuity. Moreover, the technological developments required to enable the enjoyment of beer in space—such as container design, carbonation control, and energy-efficient cooling—extend beyond the realization of drinking itself. They have broader applications in areas including beverage management, pharmaceutical storage, and spacecraft environmental control, and thus hold the potential to improve the overall quality of space life.

ASTRAX's development of space beer is a practical example of launching this cultural and technological challenge from the starting point of "human dreams." Our aim is not simply to make it possible to drink alcohol in space, but to create moments in which people can truly relax in space and to provide such moments as an ongoing service. Only by establishing this not as a voluntary experiment but as a meaningful experience for travelers can sustainable space food and beverage hospitality be realized.

As a first step, our efforts are progressing from demonstrations on parabolic flights to experiments with stratospheric balloons, and ultimately toward service provision aboard spacecraft in the future. Such challenges are not merely the pursuit of taste, but rather the shaping of "living" in space. One day, a "toast in space" will become a universal symbol of space food and beverage hospitality for humankind.

References

Reference to a conference/congress paper:

- [1] T. Yamazaki, 民間商業宇宙飛行士と新規宇宙ビジネスの展開について, 3D18, 50th Space Science and Technology Conference, Kita Kyushu, Japan, 2006, 8-10 November.
- [2] T. Yamazaki, OVERVIEW OF ASTRAX SPACE SERVICES INCLUDING OVER 50 SPACE

- BUSINESSES, ISDC-2018-Many Roads to Space, International Space Development Conference 2018, Los Angeles, USA, 2018, 24-27 May.
- [3] T. Yamazaki, ASTRAX ZERO GRAVITY FLIGHT SERVICES IN JAPAN, ISDC-2018-Many Roads to Space, International Space Development Conference 2018, Los Angeles, USA, 2018, 24-27 May.
- [4] T. Yamazaki, ASTRAX LUNAR CITY DEVELOPMENT PROJECT, ISDC-2019-Many Roads to Space, International Space Development Conference 2019, Washington D.C., USA, 2019, 5-9 June
- [5] T. Yamazaki, ASTRAX SPACE SERVICES PLATFORM BY USING BLOCKCHAIN TECHNOLOGY, ISDC-2019-Many Roads to Space, International Space Development Conference 2019, Washington D.C., USA, 2019, 5-9 June.
- [6] Taichi Yamazaki, Buhe Heshige, Yoshihide Nagase, ASTRAX UNIVERSAL SERVICE PLATFORM BY USING BLOCKCHAIN TECHNOLOGY, IAC-19-E6.5-GST.1.6, 70th International Astronautical Congress (IAC), Washington D.C., United States, 2019, 21-25 October.
- [7] Taichi Yamazaki, MISSION CONTROL CENTER TO SUPPORT COMMERCIAL SPACE MISSIONS AND PASSENGER'S ACTIVITIES INSIDE OF THE CABIN, IAC-19-B3.2.3, 70th International Astronautical Congress (IAC), Washington D.C., United States, 2019, 21-25 October.
- [8] Taichi Yamazaki, ASTRAX ACADEMY AND SPACE BUSINESS AND SPACE FLIGHT SUPPORT EDUCATIONAL SYSTEM, Next-Generation Suborbital Researchers Conference (NSRC), Broomfield, CO, United States, 2020, 2-4 March.
- [9] Taichi Yamazaki, MISSION SUPPORT CONTROL CENTER AND SUBORBITAL SPACECRAFT SIMULATOR TO SUPPORT COMMERCIAL SPACE MISSIONS AND CUSTOMER ACTIVITIES, Next-Generation Suborbital Researchers Conference (NSRC), Broomfield, CO, United States, 2020, 2-4 March.
- [10] Taichi Yamazaki, ZEROG-NAUT AND MISSION COMMANDER TO SUPPORT COMMERCIAL SPACE MISSIONS AND CUSTOMER ACTIVITIES INSIDE CABIN, Next-Generation Suborbital Researchers Conference (NSRC), Broomfield, CO, United States, 2020, 2-4 March.
- [11] Taichi Yamazaki, "SPACE SCOOTER": SPACE MOBILITY SYSTEM USED IN SPACE HOTELS AND SPACE STATIONS, IAC-20-B3.7.17, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [12] Taichi Yamazaki, ASTRAX LUNAR CITY DEVELOPMENT PROJECT 2020, IAC-20-D4.2.11,

IAC-25- E1.9.18 Page 6 of 23

- 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [13] Taichi Yamazaki, ASTRAX LUNAR CITY ECONOMIC SYSTEM BY USING BLOCKCHAIN TECHNOLOGY, IAC-20-E6.2.9, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [14] Taichi Yamazaki, ASTRAX SPACE SERVICE CATALOG SYSTEM FOR SPACE TOURISM, IAC- 20-B3.2.12, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [15] Taichi Yamazaki, ASTRAX UNIVERSAL SERVICE PLATFORM BY USING BLOCKCHAIN TECHNOLOGY, IAC-20-D4.1.20, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [16] Taichi Yamazaki, EXPERIENCE AND LESSONS LEANED FROM THE COVID-19 PROBLEM IN JAPAN AND APPLICATION TO SPACE TRAVEL, IAC-20-A1.3.15, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [17] Taichi Yamazaki, ZERO-G-NAUT AND MISSION COMMANDER TO SUPPORT COMMERCIAL SPACE MISSION AND CUSTOMER ACTIVITIES INSIDE CABIN, IAC-20-B3.2.13, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [18] Chieko Takahashi, Yuko Kirihara, Creating a new business of Space Flight Attendant service & SFA Academy, IAC-20-B3.2.10, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [19] Taiko Kawakami, Taichi Yamazaki, THE IMPORTANCE OF KIMONO IN SPACE, IAC-20-E1.9.2, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [20] Taiko Kawakami, Taichi Yamazaki, WHAT WOMEN NEED FOR SPACE TRAVEL, IAC-20-E3.2.9, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [21] Hayaki Tsuji, Taichi Yamazaki, Satoshi Takamura, Yoichi Sugiura, PEACE THOUGHT AND SOCIO-ECONOMY FOR THE SPACE AGE USING SATELLITES, IAC-20-E5.5.5, 71st International Astronautical Congress (IAC) The CyberSpace Edition, 2020, 12-14 October.
- [22] Taichi Yamazaki, ADVANCED SPACE SERVICE ACCESS APPLICATION TOOL: ASTRAX UNIVERSAL USER INTERFACE (U2U), IAC-20-B3.1.11, 71st International Astronautical Congress

- (IAC) The CyberSpace Edition, 2020, 12-14 October.
- [23] Taichi Yamazaki, Taiko Kawakami, ASTRAX LUNAR CITY DEVELOPMENT PROJECT 2021, IAC-21-D3.1.6, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [24] Taichi Yamazaki, COMMERCIAL SPACE MISSION SUPPORT CONTROL CENTER AND SUBORBITAL SPACECRAFT SIMULATOR TO SUPPORT COMMERCIAL SPACE MISSIONS AND PASSENGERS ACTIVITIES IN SPACE, IAC-21-B6.2.12, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [25] Taichi Yamazaki, INITIATIVE OF DEVELOPMENT OF THE SOLAR SYSTEM ECONOMIC BLOC BY USING BLOCKCHAIN TECHNOLOGY, IAC-21-D4.1.11, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [26] Taichi Yamazaki, Mika Islam, SPACE FASHION AND SPACE CULTURE IN THE AGE OF SPACE TRAVEL AND THE POSSIBILITIES OF "SPACE HAGOROMO", IAC-21-E5.3.6, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [27] Taichi Yamazaki, Taiko Kawakami, Keiichi Iwasaki, Akifumi Mimura, MAKING ASTRAX ACADEMY ONLINE AND MULTILINGUAL, IAC-21-E1.7.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [28] Taichi Yamazaki, POTENTIAL FUTURE PLAN OF SPACE IZAKAYA AS A PLACE TO CREATE NEW PRIVATE SPACE BUSINESS, IAC-21-E1.9.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [29] Taichi Yamazaki, FOSTERING UNIVERSAL HUMAN RESOURCES AND SUPER NEWTYPES FOR THE SPACE AGE, IAC-21-E1.9.8, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [30] Taichi Yamazaki, Shunsuke Chiba, DEMAND AND SUPPLY MATCHING BY THE ASTRAX LUNAR CITY BUSINESS COMMUNITY AND RESIDENCE CLUB, IAC-21-D3.3.3, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [31] Taichi Yamazaki, OUTLINE OF ASTRAX PRIVATE SPACE BUSINESS CREATION EDUCATION AND TRAINING CENTER, IAC-21-B3.2.5, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.

IAC-25- E1.9.18 Page 7 of 23

- [32] Taichi Yamazaki, PROTOTYPE PLANS FOR VARIOUS COMMERCIAL SPACECRAFT TRAINING SIMULATORS, IAC-21-B3.2.2, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [33] Taichi Yamazaki, Yuki Yamazaki, EXPERIMENTS ON COLORING SOAP BUBBLES UNDER MICROGRAVITY, IAC-21-A2.6.5, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [34] Taichi Yamazaki, STUDY OF THE SELECTION OF LOCATION FOR COMMERCIAL SPACEPORTS IN JAPAN, IAC-21-D6.3.8, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [35] Taichi Yamazaki, SPACE RADIATION SHIELDING BY WATER DOME IN ASTRAX LUNAR CITY ON THE MOON, IAC-21-A1.5.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [36] Taichi Yamazaki, Hiroki Nakaegawa, INTRODUCTION OF A PRACTICAL EXAMPLE OF ASTRAX LUNAR CITY MAPPING WITH MINECRAFT AND ITS LINKAGE TO ECONOMIC ACTIVITIES ON EARTH, IAC-21-D4.2.6, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [37] Taichi Yamazaki, Hiroki Nakaegawa, DEVELOPMENT OF A CIVILIAN SPACECRAFT INTERIOR SIMULATOR USING MINECRAFT, IAC-21-B6.3.11, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [38] Taichi Yamazaki, PROPOSAL TO ADD A SPACE ECONOMICS SUBCOMMITTEE TO THE UN OFFICE FOR OUTER SPACE AFFAIRS' COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE (COPUOS IN UNOOSA), IAC-21-E3.4.7, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [39] Ayako Kurono, Haruto Kurono, Taichi Yamazaki, THE GENDER GAP AND ITS IMPACT IN MANGA, ANIME AND OTHER SPACE CREATIONS, IAC-21-E5.3.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [40] Ayako Kurono, Haruto Kurono, Taichi Yamazaki, CAREER DESIGN IN SPACE FROM CHALLENGED TO CHALLENGING, IAC-21-B3.9-GTS.2.1, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [41] Haruto Kurono, Ayako Kurono, Taichi Yamazaki, THE EFFECTS OF USING MINECRAFT TO

- TEACH CHILDREN ABOUT SPACE, IAC-21-E1.8.2, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [42] Tomoko Imaizumi, Taichi Yamazaki, MAINTAINING THE HEALTH OF PILOTS AND CREW, IAC-21-D6.3.4, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [43] Taichi Yamazaki, Mami Oka, CONSIDERATION ON THE CREATION OF A CHICKEN EGG MARKET AT THE MOON VILLAGE, IAC-21-D4.2.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [44] Chieko Takahashi, Yuko Kirihara, Taichi Yamazaki, CONSIDERATION OF THE FUTURE PROSPECTS OF THE SPACE FLIGHT ATTENDANT(SFA) PROFESSION WITH THE EXPANSION OF SPACE TRAVEL MARKETING.IAC-21-B3.9-GTS.2.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [45] Taiko Kawakami, Taichi Yamazaki, PROBLEMS AND SOLUTIONS THAT ARE PREVENTING MORE WOMEN FROM BECOMING SPACE TOURISTS, IAC-21-B3.2.3, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [46] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF A TERIPPER FOR INTRA-SPACECRAFT TRANSPORTATION, IAC-22-A1.3.17, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [47] Taichi Yamazaki, Taiko Kawakami, POSSIBILITY OF ZERO-GRAVITY FLIGHT SERVICE BY MRJ (MITSUBISHI REGIONAL JET), IAC-22-A2.IPB.1, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [48] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF ASTRAX COMMERCIAL SPACECRAFT EDUCATION AND TRAINING SIMULATOR, IAC-22-B3.IPB.4, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [49] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF SPACE SHOWER, IAC-22-B3.3.5, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [50] Taichi Yamazaki, Taiko Kawakami, PRODUCTION OF SPACE SUITS AND REPLICAS FOR SPACE TRAVEL, IAC-22-B3.9-GTS.2.1, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.

IAC-25- E1.9.18 Page 8 of 23

- [51] Taichi Yamazaki, Taiko Kawakami, ADVANCED SPACE SERVICE ACCESS APPLICATION TOOL "ASTRAX UNIVERSAL USER INTERFACE (ASTRAX U2U)", IAC-22-B5.IP.7, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [52] Taichi Yamazaki, Taiko Kawakami, ASTRAX SOLAR SYSTEM ECONOMIC BLOC CONCEPT USING NFT AND METAVERSE TECHNOLOGIES, IAC-22-D4.1.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [53] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF A REAL-LIFE (ANALOG) ASTRAX LUNAR CITY CONSTRUCTION PROJECT IN JAPAN, IAC-22-D4.2.6, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [54] Taichi Yamazaki, Taiko Kawakami, MULTILINGUALIZATION OF ASTRAX ACADEMY, IAC-22-E1.7.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [55] Taichi Yamazaki, Taiko Kawakami, POSSIBILITY OF ZERO-GRAVITY FLIGHT AND SPACE FLIGHT BY PEOPLE WITH DISABILITIES, IAC-22-E1.9.18, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [56] Taichi Yamazaki, Kentaro Chimura, Taiko Kawakami, DEVELOPMENT OF SPACE TOILET "SPACE BENKING" IN JAPAN, IAC-22-E5.IP.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [57] Taichi Yamazaki, Taiko Kawakami, DISASTER PREVENTION AND EVACUATION TECHNOLOGIES ON EARTH AND THEIR APPLICATION TO SPACE TRAVEL, IAC-22-E5.4.9, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [58] Mika Islam, Taichi Yamazaki, CLEANING METHODS FOR REUSING CLOTHES IN SPACE, IAC-22-B3.7.7, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [59] Mika Islam, Taichi Yamazaki, HOW TO GO TO SPACE WITH DIFFERENT HAIRSTYLES, IAC-22-E1.9.7, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [60] Yuko Kirihara, Airi Negisawa, Chieko Takahashi, Taichi Yamazaki, Cocoro Tamura, RESEARCH ON PSYCHOLOGICAL CHANGES AND GROWTH OF CHILDREN THROUGH EDUCATION RELATED TO COMMERCIAL SPACE BUSINESS, IAC-22-E1.IPB.9, 73rd International

- Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [61] Ayako Kurono, Taichi Yamazaki, WHAT DO THEY NEED FOR A SPACE MUSEUM?, IAC-22-E5.5.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [62] Haruto Kurono, Taichi Yamazaki, ESTABLISHMENT AND DEVELOPMENT OF A LUNAR COMMUNITY AND ACTIVITY SPACE BY CHILDREN FOR CHILDREN, IAC-22-D4.2.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [63] Akifumi Mimura, Taichi Yamazaki, VIDEO EDITING SERVICES FOR SPACE TRAVELLERS, IAC-22-B3.2.6, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [64] Akifumi Mimura, Taichi Yamazaki, TECHNOLOGIES ON A TRANSPARENT RESTROOM COULD BE USED FOR LUNAR HABITATS, IAC-22-E5.1.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [65] Taiko Kawakami, Taichi Yamazaki, ASTRAX LUNAR CITY PROJECT 2022, IAC-22-D3.1.12, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [66] Chikako Murayama, Taichi Yamazaki, THE NEED FOR A SPACE VERSION OF HAND SIGNALS, A COMMUNICATION TOOL FOR SPACE TRAVELERS, IAC-22-B3.2.1, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [67] Chikako Murayama, Taichi Yamazaki, Taiko Kawakami, PHOTOGRAPHY SERVICES AND TECHNIQUES REQUIRED FOR SPACE TRAVEL, IAC-22-D6.1.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [68] Chikako Murayama, Taichi Yamazaki, ON IMAGES OF THE UNIVERSE INFLUENCED BY MANGA AND ANIME, IAC-22-E1.9.3, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [69] Hikaru Otsuka, Taichi Yamazaki, A SPACE EDUCATION PROGRAM TO SOLVE THE SHORTAGE OF COMMERCIAL SPACE TEACHERS IN JAPANESE SCHOOLS, IAC-22-E1.7.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [70] Yasuko Fukushima, Taichi Yamazaki, HOW TO CAPTURE THE COSMIC DIVERSITY THAT IS COMING, IAC-22-E1.9.22, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.

IAC-25- E1.9.18 Page 9 of 23

- [71] Chieko Takahashi, Taichi Yamazaki, THE ROLE OF SPACE FLIGHT ATTENDANTS IN LARGE, LONG-DURATION SPACE TRAVEL, IAC-22-B3.2.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [72] Kiyomi Shigematsu, Taichi Yamazaki, PROPOSAL FOR A BUSINESS MODEL THAT ENABLES AND ENCOURAGES OLDER ADULTS TO TRAVEL TO SPACE, IAC-22-E5.IP.22, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [73] Taichi Yamazaki, Taiko Kawakami, Fumihiro Oiwa, DEVELOPMENT OF ASTRAX ZERO GRAVITY AIRCRAFT EDUCATION AND TRAINING SIMULATOR, IAC-23-A2.5.9, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [74] Taichi Yamazaki, Taiko Kawakami, DEVELOPING TECHNOLOGY FOR DRINKING CHILLED CARBONATED BEVERAGES IN SPACE, IAC-23-B5.1.11, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October."
- [75] Taichi Yamazaki, Taiko Kawakami, Hiroki Nakaegawa, DEVELOPMENT OF COMMERCIAL SPACECRAFT EDUCATION AND TRAINING SIMULATOR USING THE METAVERSE, IAC-23-D1.1.6, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [76] Taichi Yamazaki, Taiko Kawakami, CONSTRUCTION PLAN OF ASTRAX LUNAR CITY SIMULATION FACILITY IN JAPAN, IAC-23-D4.2.9, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [77] Taichi Yamazaki, Taiko Kawakami, Kentaro Chimura, DEVELOPMENT OF THE SPACE TOILET CALLED "SPACE BENKING" 2023, IAC-23-E5.4.3, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [78] Taichi Yamazaki, Taiko Kawakami, INTRODUCTION OF COMMERCIAL SPACE R&D CENTER "ASTRAX LAB" IN JAPAN, IAC-23-B3.IPB.5, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [79] Taichi Yamazaki, Taiko Kawakami, ANALYSIS OF PASSENGERS' NEEDS AND DEMANDS OF ASTRAX ZERO GRAVITY SERVICES AND APPLICATION FOR SPACE TRAVEL SERVICES, IAC-23-B3.IP.1, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [80] Taiko Kawakami, Taichi Yamazaki, THE SENSES AND CREATIVITY THAT CAN BE ACHIEVED BY BRINGING ENTERTAINMENT IN SPACE, IAC-23-E1.IP.22, 74th International Astronautical

- Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [81] Taiko Kawakami, Taichi Yamazaki, TECHNOLOGY, PROBLEMS AND SOLUTIONS FOR DRINKING ALCOHOL IN SPACE, IAC-23-E1.9.2, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [82] Taiko Kawakami, Taichi Yamazaki, TECHNOLOGY, PROBLEMS, AND SOLUTIONS FOR SPACE TRAVEL MEALS AS REPRESENTED BY "YAKITORI", GRILLED CHICKEN, IAC-23-B5.IP.2, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October."
- [83] Taiko Kawakami, Taichi Yamazaki, THE POSSIBILITY OF DEVELOPING JAPANESE CULTURE THROUGH "NATTO" IN SPACE, IAC-23-E5.IP.17, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [84] Hikaru Otsuka, Taichi Yamazaki, LOCAL REVITALIZATION PROJECT TO TURN MY HOMETOWN, KOMONO TOWN, INTO "SPACE TOWN", IAC-23-E1.9.3, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [85] Hikaru Otsuka, Taichi Yamazaki, METHODS AND PRACTICES FOR INTRODUCING PRIVATE SPACE EDUCATION PROGRAMS INTO JAPANESE SCHOOLS, IAC-23-E1.2.8, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [86] Masahiko Takehara, Taichi Yamazaki, ASTROLOGY IN THE SPACE AGE: WHAT WILL HAPPEN TO THE HOROSCOPES OF THOSE BORN ON THE MOON?, IAC-23-E1.9.8, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [87] Taichi Yamazaki, Taiko Kawakami, COMMERCIAL SPACE SUIT R&D CENTER "ASTRAX WAER LAB" 2024, IAC-24-E5,IP,26, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [88] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF ASTRAX COMMERCIAL SPACECRAFT MISSION SUPPORT CONTROL CENTER IN JAPAN 2024, IAC-24-B6,1,8, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [89] Taichi Yamazaki, Taiko Kawakami, ASTRAX LUNAR CITY SIMULATION FACILITY CONSTRUCTION PLAN IN JAPAN 2024, IAC-24-D4,2,9, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [90] Ayako Kurono, Taichi Yamazaki, EXPLORING THE CONCEPT AND POTENTIAL OF SPACE

IAC-25- E1.9.18 Page 10 of 23

- MUSEUMS FOR PRESERVATION, EDUCATION, AND TOURISM, IAC-24-E5,5,10, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [91] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF RAMEN EATEN IN SPACE, IAC-25-B3,IP,21,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [92] Taichi Yamazaki, Taiko Kawakami, THE POTENTIAL OF SPACE NFTS, IAC-25-E3,IP,15,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [93] Taichi Yamazaki, Taiko Kawakami, UNIFORMS FOR PRIVATE SPACEFLIGHT MISSION COMMANDERS AND SPACE FLIGHT ATTENDANTS, IAC-25-B3,IP,22,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [94] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT AND EXPANSION OF NEW BEVERAGES FOR THE COMMERCIAL SPACE TRAVEL ERA, IAC-25-E6,IP,39,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [95] Taichi Yamazaki, Taiko Kawakami, A VERSATILE SPACE APPLICATION TOOL TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX U2U, IAC-25-D2,IP,25,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [96] Taichi Yamazaki, Taiko Kawakami, A SPACE VALUE STANDARD TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX VALUE, IAC-25-IP,6,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [97] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF ASTRAX SPACE MISSION SUPPORT CONTROL CENTER 2025, IAC-25-B3,4-B6.4,15,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [98] Taiko Kawakami, Taichi Yamazaki, ASTRAX LUNAR CITY PROJECT 2025, IAC-25-D4,2,12,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [99] Taiko Kawakami, Taichi Yamazaki, CONSTRUCTION PLAN OF ASTRAX LUNAR CITY SIMULATION FACILITY IN JAPAN 2025, IAC-25-E5,IP,21,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [100] Hikaru Otsuka, Taichi Yamazaki , IMPLEMENTING A RURAL REVITALIZATION PROJECT TO TURN MY HOMETOWN,

- KOMONO TOWN, INTO A 'SPACE TOWN', IAC-25-E1,9,12,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [101] Ayako Kurono, Haruto Kurono, Taichi Yamazaki, WHO GOVERNS SPACE MUSEUMS? LEGAL AND POLICY CHALLENGES IN THE NEW SPACE ERA, IAC-25-E5,5,9,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [102] Taiko Kawakami, Taichi Yamazaki, ESTABLISHING A CULTURE OF DRINKING IN SPACE: REALIZING A BEER EXPERIENCE IN SPACE EQUIVALENT TO THAT ON EARTH, IAC-25-E1,9,18,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [103] Taichi Yamazaki, Taiko Kawakami, SPACE BUSINESS DEVELOPMENT EDUCATION AND TRAINING ACADEMY: ASTRAX ACADEMY 2025, IAC-25-E1,LBA,9,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [104] SpaceNews. (2009, December 4). Sapporo Space Barley Beer is launched onto the market for the first time in the world in limited quantities for charity. https://spacenews.com/sapporo-space-barley-beer-is-launched-onto-the-market-for-the-first-time-in-the-world-in-limited-quantities-for-charity/. (accessed 11 Sep 2025).
- [105]Anheuser-Busch. (2017). Budweiser sends barley seeds to the ISS for beer experiment. https://www.collectspace.com/news/news-112117b-budweiser-mars-beer-space-station.html. (accessed 11 Sep 2025).
- [106]University of Florida. (2024). Beer yeast fermentation under simulated microgravity. Beverages. https://news.ufl.edu/2024/08/beerin-space/. (accessed 11 Sep 2025).
- [107]Starbase Brewing. (2025). OASIS Experiment; MicroBrew-1 Experiment.
- https://starbasebrewery.com/pages/growing-crops-in-regolith-in-space. (accessed 11 Sep 2025). [108] Sciencing. (2023, August 23). There's a reason alcohol is banned on the International Space Station but it's not what you think.
 - https://www.sciencing.com/1830319/reason-alcoholdrinks-banned-international-space-station-not-what-you-think/. (assecced 11 Sep 2025).
- [109]McGovern, P. E. (2009). Uncorking the past: The quest for wine, beer, and other alcoholic beverages. University of California Press.
- [110] BBC Future. (2017, February 17). Why astronauts are banned from getting drunk in space. BBC. https://www.bbc.com/future/article/20170217-why-astronauts-are-banned-from-getting-drunk-in-space. (accessed 11 Sep 2025).

IAC-25- E1.9.18 Page 11 of 23

76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025. Copyright ©2025 by ASTRAX, Inc., International Space Services, Inc., Taiko Kawakami. All rights reserved.

IAC-25- E1.9.18 Page 12 of 23

IAC-25-E1.9.18

宇宙での飲酒文化の確立:地上と変わらないビール体験を宇宙で実現する

Taiko Kawakamia*, Taichi Yamazakib

^a General Manager, ASTRAX, Inc., 1-1-4-301 Mukogaoka, Bunkyo, Tokyo, Japan 113-0023, taiko.kawakami@astrax.space
 ^bCEO and Astronaut, ASTRAX, Inc., 2-23-17 Komachi, Kamakura, Kanagawa, 248-0006, Japan, taichi.yamazaki@astrax.space
 * Corresponding Author

Abstract

宇宙飛行が探査から観光へと移行し、人類が宇宙に滞在する時代が到来している。この新たな時代には、生存環境の整備だけでなく、宇宙においても快適で豊かな生活を送るための技術・サービス・文化が求められる。飲食体験の向上は、その中でも重要な要素の一つである。しかし、微小重力環境における飲酒に関する研究はほとんど進んでおらず、「宇宙での飲酒文化」もまだ確立されていない。

ASTRAX は、民間宇宙旅行の時代に向けた商業的な宇宙飲酒サービスの実現を目指し、宇宙で飲めるビールの開発と実用化に取り組んでいる。単に宇宙で安全に飲酒を可能にすることが目的ではなく、地上と同じように、キンキンに冷えたビールをジョッキからグイッと飲む体験を宇宙で実現することを目指している。この挑戦は技術開発にとどまらず、未来の宇宙社会における新しいライフスタイルの確立にもつながる。

無重力環境では液体の動きが異なり、ビールの炭酸バランスや口当たりも地上とは大きく変わる。しかし、「飲酒」という行為が持つ社会的・文化的な意味合いは、地球上と変わらない。 宇宙で「乾杯」を交わすことは、未来の宇宙社会における新たなコミュニケーションの形となり得る。また、長期宇宙滞在における心理的な健康維持にも重要な役割を果たす可能性がある。さらに、宇宙ならではの新しい飲酒スタイルを探求することで、ビールに限らず、ワインやカクテル、ソフトドリンクなど、幅広い宇宙飲料の技術・サービス・文化の発展にもつながる。

本研究では、宇宙での飲酒体験の文化的・技術的課題を整理し、飲酒サービスや文化が未来の宇宙社会にどのように根付くかを考察する。民間宇宙旅行が発展する中で、「飲む楽しみ」は宇宙ホスピタリティの重要な要素となる。本研究を通じて、宇宙での新たなライフスタイルの確立と、地球から宇宙へと続く飲食文化の橋渡しを目指す。

Keywords: 宇宙ビール・宇宙空間での飲酒・ASTRAX・宇宙旅行・宇宙ホスピタリティ

1. Introduction

民間宇宙旅行は 2021 年に本格的に開始され、2022 年には年間約 30 人の民間人が宇宙に到達し、国家プロジェクトとして派遣される宇宙飛行士の人数を上回ったた。さらに SpaceX 社は 2026 年からの火星移住計画を発表するなど、宇宙は探査や科学研究の場から、観光・滞在、そして「暮らす」場所へと大きくシフトしつつある。

これまで宇宙は、訓練を受けた限られた宇宙飛行士だけが滞在する場所であった。しかし今後は、一般の人々が宇宙に行くことを前提とする時代が既に到来しつつある。ASTRAX は、そうした時代には、単に「生存できる環境」を整えるだけでは不十分であり、快適で豊かな生活、

さらにホスピタリティが重要になると考えてい ス

これからは、地球上の生活におけるホスピタリティを参考にしつつ、宇宙でも同様の、あるいは「宇宙ならでは」のホスピタリティを考えていく必要がある。

その中でも、飲酒は古来より地球上で社交・祝祭・心理的リラックスを担う文化の一部として定着してきた。この普遍的な存在は、宇宙においても人々が快適に過ごすための重要な要素となり、宇宙ホスピタリティにおいて必要とされると考える。

本研究では、とりわけビールを対象として、 宇宙社会における飲酒文化の確立に向けた考察 を行う。

IAC-25- E1.9.18 Page 13 of 23

2. 背景 (Background)

2.1 宇宙の飲み物に関する実験

これまで「宇宙で飲み物を飲む」ことを直接 対象とした試みは、1985年のNASAによるコーラ 実験、オーストラリア Vostok チームによる宇宙 用ビール容器の開発、そしてフランス Mumm 社の 無重力シャンパン「Grand Cordon Stellar」と いった、ごく限られた例にとどまっている。参 考論文(たいち炭酸 74)

一方で、「宇宙で飲み物を作る」研究開発は活発化している。サッポロや Budweiser による大麦栽培実験、フロリダ大学の微小重力下での発酵研究に加え、2025 年にはテキサスのStarbase Brewingが国際宇宙ステーション (ISS)での発芽・発酵実験を成功させた。これらの取り組みは、宇宙における飲酒文化の実現に向けた技術的基盤を築くものである。

2.1.1 宇宙で飲み物を飲む実験

1985 年のスペースシャトル・チャレンジャーによる STS-51-F ミッションでは、コカ・コーをペプシがそれぞれ独自のディスペンサーを用いて宇宙で炭酸飲料を飲む実験を行った。この試みは、炭酸が微小重力下でどのように挙動して液体とガスが分離しにくく、地上のように自然にゲップをすることができないなどの問題にとどまらず、炭酸飲料を「宇宙で快適に飲む」とどまう行為自体に技術的な課題が存在することを示す重要な知見である。

その後、オーストラリアのチームによる「Vostok ビール」の開発では、無重力環境でも 泡立ちを制御できる特殊な容器が考案された。 無重力フライトでの試験では、全てが泡に変わってしまうことなく、実際にビールを口にできることが確認された。これによって、宇宙での 飲酒体験が単なる夢物語ではなく、工学的工夫によって実現可能であることが証明されたといえる。

さらに、2017 年にはフランスのシャンパンメーカーMummが「Grand Cordon Stellar」と呼ばれる特製シャンパンを発表した。これは単なる宣伝効果を狙ったものではなく、微小重力下でも液体をグラスに注ぎ、泡を発生させ、実際に乾杯を行うことを可能にする技術的挑戦であっ

た。無重力フライトによって実際に乾杯が行われ、無重力でもシャンパン特有の華やかな演出を楽しむことができることが示された。ただし、グラスの大きさは日本酒のお猪口サイズであった。

2.1.2 宇宙で飲み物を作る実験

これまで「実際に宇宙で飲む」試みは限られている一方で、宇宙におけるビールや酒類を「作る」ための研究は近年活発に行われている。2008~2009年にかけて、サッポロは ISS で栽培した大麦を用いて地上で限定醸造を行い、「スペースバーレイ」と名付けたビールを抽選で提供した。この取り組みは、市販ではなく限定抽選という形をとったことで大きな話題を呼び、「宇宙で育てた原料からビールを造る」という実例を示すものとなった。

2017 年には Budweiser が大麦種子を ISS に送り、発芽や遺伝子変化を調査し、将来的な火星での栽培を見据えた基礎研究を進めた。

さらに 2024 年にはフロリダ大学が模擬微小重力環境で酵母の発酵実験を行い、発酵速度の上昇や香り成分の抑制といった特異な挙動を確認している。

最新の事例としては、2025 年にテキサスの Starbase Brewing が ISS で二つの実験を実施した。ひとつは火星模擬土壌と麦芽かすを用いた大麦の発芽実験 (OASIS) であり、もうひとつは未発酵麦汁と酵母を混合して発酵を開始させる実験 (MicroBrew-1) である。いずれも成功を収めており、宇宙での栽培と発酵の可能性を実証する重要な一歩となった。

これらの取り組みは、いずれ宇宙において 「飲む」文化を成立させるための技術的基盤を 築いていると言える。

ちなみに、世界 15 カ国が運営する国際宇宙ステーションでは、揮発性が生命維持システムに悪影響を及ぼす、という理由でアルコールが禁止されている。(104)宇宙での飲酒文化を確立していくためには、この問題もいずれ考えなくてはいけない。

2.2 飲酒の文化の変遷

2.2.1 世界の飲酒文化の歴史

お酒は約13,000年前から人類とともにある最古の嗜好品のひとつである。世界各地で祝祭・

IAC-25- E1.9.18 Page 14 of 23

通過儀礼・社交・心理的リラックスなど、文化の普遍的構成要素として誕生し、継続的に存在し発展してきた。とりわけビール系飲料は、穀物を発酵させる技術さえあれば自然に生まれるため、古代エジプトからアフリカ、アジア、南米に至るまで世界中で独自に発展してきた。ワインや蒸留酒と並び、地域ごとに特色を持ちながらも、人類共通の文化的基盤として受け継がれてきたのである。

飲酒は古来より普遍的な文化要素として社会に根付いてきたが、宗教的に禁酒を定めるイスラム文化圏のような例外も存在する。とはいえ、多くの地域では酒は社交や儀式に欠かせない役割を担ってきた。

2.2.2 宇宙での飲酒に関する現状

一方、現在の国際宇宙ステーションにおける 飲酒禁止は、宗教的・倫理的理由ではなく、主 として技術的・医学的な制約に基づく。アルコ ールは揮発性物質として生命維持システムに悪 影響を与える可能性があり、また微小重力下念 の健康リスクや緊急時の対応能力低下も懸って れるためである。ロシア(旧ソ連)ではかつマ ミール宇宙ステーションなどで少量のコニャさ というではでいた例があり、この歴史は飲酒禁 止の文化的慣習ではなく、制度的な制御が近年 強化されてきたことを示している。(110)

したがって、宇宙における禁酒は文化的な否定ではなく一時的な技術的制約にすぎず、これが克服されれば飲酒文化は宇宙社会においても根付いていく可能性が高い。

3. 宇宙での飲酒する上での技術的課題と ASTRAX の取り組み

3.1技術的課題

宇宙でビールを飲むためには、いくつかの技術的課題を克服する必要がある。まず、無重力環境では液体の挙動が大きく変化する。地上では泡と液体が重力によって分離するが、微いに重力下では分離が起こらず、全体が泡だらけに重力やすい。また液体自体も球状となり、ジョンキやグラスのような従来の容器から自然に到象を利用した専用容器(ボトルやグラス)の開発が不可欠である。

さらに、宇宙船内では冷蔵設備が限られているため、「冷えたビール」を実現するためには、

省電力かつ効率的な冷却システムや、宇宙環境の極端な温度差を利用した新しい冷却方法の開発が求められる。また、人体への影響も重要な課題である。微小重力では炭酸ガスが胃の中で分離せず膨満感を起こしやすく、アルコール代謝や健康リスクについても地上以上に慎重な評価が必要とされる。

これらの課題は、過去のいくつかの実験によって徐々に明らかになってきた。1985 年のスペースシャトル・チャレンジャーにおける NASA のコーラ実験は、微小重力下で炭酸飲料が自然に分離せず、飲みづらさや膨満感をもたらすことを初めて示した。

その後、オーストラリアの Vostok チームは、 無重力環境でも泡立ちを制御できる特殊容器を 開発し、無重力フライトで実際にビールを飲む ことに成功した。

2022 年にはフランスのシャンパンメーカー Mummが「Grand Cordon Stellar」を発表し、特 殊なグラスを用いることで無重力下でもシャン パンの乾杯を可能にした。

これらの事例は、まずは技術的挑戦として位置 づけられるが、単なる嗜好品としての飲酒にと どまらず、宇宙における「快適な暮らし」を象 徴し、さらに「宇宙でも乾杯できる」という文 化的側面をも示している。

3.2 ASTRAX の取り組み

私たち ASTRAX は、「宇宙で地上と同じように、 冷えたビールをジョッキで飲む体験」を実現す ることを目指して、2021 年から研究開発を進め ている。

3.2.1 技術開発

毛細管現象を利用した無重力対応ジョッキや、 宇宙コーヒーカップを参考にしたグラスの試作 を進めている。さらに、ジョッキからビールを 飲む前段階として、宇宙ビールサーバーの開発 も検討している。

3.2.2 文化的試み

単なる技術的課題の解決にとどまらず、「宇宙 で乾杯する」という新しいコミュニケーション の形を創出することを目標としている。

3.2.3 検証計画

IAC-25- E1.9.18 Page 15 of 23

開発したサーバーやジョッキは、無重力フライトによる実証実験を通じて有効性を検証する予定である。

3.2.4 製品活用と展開

これらの取り組みでは、実際のビールとして 日本・茨城県境町の「さかい河岸ブルワリー」 の既存製品を利用している。今後は味のバリエ ーションやラベルデザインも拡充し、より多様 な「宇宙ビール体験」を提供できるよう準備を 進めている。

4. 宇宙飲食ホスピタリティ

このように、課題は依然として大きいものの、世界各地で取り組みが進むことで「宇宙でビールを飲む」という行為はもはや夢物語ではなく、現実に向けて前進しつつある。ASTRAXの試みもまた、その先駆けとして宇宙ホスピタリティ産業の未来を切り拓く挑戦である。詳細はビール81と炭酸74を参照)

ASTRAX が定義する「宇宙飲食ホスピタリティ」とは、宇宙という特殊な環境において、単なる栄養補給にとどまらず、飲食を通じて人間に安らぎや楽しさ、文化的なつながりをもたらす営みを指す。その象徴が「宇宙でビールを飲む」体験である。無重力下で仲間と乾杯を交わす瞬間は、物理的には嗜好品を摂取する行為にすぎない。しかし、それが宇宙旅行者にとっては「人間らしさを取り戻す儀式」となり、心理的健康を支え、社会的絆を生み出す。

5. 考察 (Discussion)

5.1 文化の継続と生活の豊かさ

飲酒文化は約 13,000 年以上にわたり人類に受け継がれてきた、最古の嗜好文化のひとつである。しかも面白いことに、それぞれ世界各地で独自に誕生し、継続して発展してきた。ビール、ワイン、蒸留酒など、地域ごとに形は異なるけれど、祝祭や通過儀礼、また日常の団らんにおいて重要な役割を担い続けてきた。その普遍性は、人類がいかなる環境においても飲酒によって「楽しみ」や「心の豊かさ」を追求してきたことの証である。

宇宙に進出する人類がこの文化を継続することは、単なる娯楽を超えて「地球での暮らしと 宇宙での暮らしをつなぐ」象徴的な営みとなる。 例えば、日本における「居酒屋文化」はその 典型である。仕事の帰りに赤提灯の下で、美味 しい酒と食事を共に楽しむ空間は、栄養補給で はなく人間関係を育み、日々の生活に彩りを与 える文化的要素である。日本以外にもバー、バ ルといったお酒を介して人が交流し、労う場は 多くの地域に見られる生活の一部である。

同様に、宇宙においても飲酒の場は「暮らすこと」の象徴となるだろう。その中でも「乾杯」という行為は、世界中で共通して受け継がれてきた文化を端的に示す習慣のひとつである。乾杯は、日常の仲間との食事やお祝いの場だけでなく、結婚式のような儀礼や、追悼の場での「献杯」にも見られる。つまり、乾杯は人と人との結束を確かめ、また人生の節目や記憶を共有する行為として普遍的な役割を担ってきたのだ

宇宙で交わされる乾杯もまた、生活が続いている実感を与えると同時に、異なる国や文化を持つ人々が互いを尊重し合い、共に生きる姿を示す象徴となるだろう。それは、宇宙社会において平和と共生を築くための大切な一歩になるはずだ。

5.2 社交とコミュニケーション

飲酒は古来より、人と人を自然に結びつける 役割を果たしてきた。地球上では、宴会、交流 会、ホームパーティーといった場において、酒 を酌み交わす行為そのものが会話の潤滑油とな り、立場や背景の異なる人々を一時的にフラッ トにする力を持っている。日本には「飲みニケ ーション」という言葉があり、酒席が人間関係 の構築や信頼の醸成に寄与してきたことを端的 に表している。

宇宙においても、共に飲む体験は、乗員同士の 交流を円滑にする重要な手段となるだろう。今 後、多くの民間の宇宙船にそれぞれ違う国籍・ 人種の宇宙旅行者が乗り合わせ、長い時間を共 有することが予想される。その際、飲酒は緊張 を和らげ、会話を促進し、相互理解を自然に深 める契機となり得る。

すなわち、飲酒は宇宙においても「人と人の距離を縮める手段」として機能し、閉鎖環境における人間関係の構築や維持に貢献すると考えられる。

5.3 精神的健康への寄与

IAC-25- E1.9.18 Page 16 of 23

人間が長期間にわたって健全に生活するためには、緊張とリラックスのバランスを取ることが欠かせない。宇宙空間のように閉鎖性・孤立性の強い環境では、このバランスが崩れやすく、中宙機関はこれまで、乗員のメンタルへルスを大力ともとがで、乗員の対した施策を導入してきた。こうした施策を力を対けないための機能的ケア」にとどまっている。

その点、地球上で、私はそうなのだが仕事終わりに冷えたビールを口にする瞬間、それは単なるアルコール摂取ではなく、自分をねぎらう「ご褒美の体験」である。喉を通る感覚や、ほろ酔いによる解放感そのものが、緊張をほどき、日常に彩りを与えてくれる。ビールを飲むこと自体が目的としての価値を持つ「楽しみ」なのだ。 もし宇宙空間でも、任務を終えた後に「今日も頑張った」と自分をねぎらう一杯があれば、それは大きな精神的支えになるだろう。

飲酒は単なるストレス対処ではなく、「自分をいたわる時間」を提供するものである。そうしたご褒美の存在は、宇宙生活をより人間らしく、豊かなものへと導くだろう。したがって効では神いる心理的健康を支える有効として位置づけられる。従来の機能的ケアでは補いきれない「心の緊張をほどく担うでしたがで、長期滞在におけるストレス軽減やなりことで、長期滞在におけるストレス軽減やもうことで、もり滞在におけるストレス軽減やもうことで、もりに営み」へと進化させる上で欠かせない要素となるだろう。

5.4技術開発の波及効果

「宇宙で冷えたビールをジョッキに注いでぐいっと飲む」ことを実現するには、単に容器を工夫するだけでは不十分である。液体と気体を分ける仕組み、無重力下で炭酸ガスの動きをコントロールする方法、省エネルギーで効率よく冷やす技術など、いくつもの課題を乗り越える必要がある。こうした課題を解決する中で生まれる技術は、単なる「ビールを飲む楽しみ」にとどまらず、宇宙での生活そのものをより快適で安全なものにしていく力を持っている。

たとえば、炭酸飲料を安心して楽しめるよう になれば、水や栄養ドリンクなど他の飲み物に も応用でき、食のバリエーションが広がるだろう。また、揮発性のある液体を安全に扱えるようになれば、飲料だけでなく薬の管理や船内環境の安定にも役立ち、宇宙船全体の安全性を高めることにつながる。

さらに、こうした新しい技術は地球でも役立つ。少ないエネルギーで液体を冷やす技術や、 液体をうまくコントロールする仕組みは、災害 時の非常用装置や、限られた資源で生活する極 地・僻地での暮らしにも応用できる。つまり、 「宇宙でビールを飲む」という挑戦は、一見す ると遊び心から生まれたように見えるが、実際 には人類の暮らしを広く豊かにする技術革新に つながる可能性を秘めている。

5.5 サービス開発の視点

ASTRAX の宇宙ビール開発は、「宇宙でもキンキンに冷えた美味しいビールを、泡と液体 3:7 の黄金比でジョッキに注ぎ、ぐいっと飲みたい」という、ごく素朴で人間らしい欲求から始まった。この出発点は、従来の「研究のための研究」とは一線を画すものである。単なる実験や技術検証を目的とするのではなく、「人々が実際に求める体験」を実現するために技術を逆算的に構築していく姿勢こそが特徴的である。

このように、人間の夢や欲求を起点とした開発は、ASTRAXのサービスを作っていく際に根幹となる考え方である。サービス開発において重要なのは、最初に「人が本当にやりたいことであるに一ズ)」をしっかりと捉え、そのために当要な技術を組み合わせていくことである。宇宙ビールはその実例であり、人間中心の視点から発想することがであることができる。それであるにしている人がいるので、確実に利用される商品となる。

ASTRAX の宇宙ビール開発への挑戦は、単なる 嗜好の追求ではなく、人間の夢を出発点にした 発想こそが、これからの宇宙産業に求められる 姿であることを示すモデルケースである。

5.6 サービス提供を考える上で必要な視点

宇宙ビールを実際にサービスとして展開していくためには、単に「宇宙で飲めるようにする」ことにとどまらず、多様な場面や形態を想定して検討する必要がある。

第一に、宇宙で実際に飲めるようにすることが求められる。これは宇宙旅行者や長期滞在者

IAC-25- E1.9.18 Page 17 of 23

が安心して飲めるように、容器や炭酸制御、保 冷技術といった実装を整える取り組みである。

第二に、地球にいながら宇宙を感じられる体験を提供することである。たとえば、無重力を模擬した演出や、宇宙船を模した空間でビールを楽しむイベントは、宇宙を身近に感じさせる手段となり得る。

第三に、地球と同じ飲み方を再現するという方向性もある。ジョッキで乾杯する、泡と液体のバランスを維持する、といった「普段どおりの飲み方」を宇宙で可能にすることで、旅行者は安心感や生活との連続性を得られるだろう。

第四に、「宇宙ならでは」の飲み方を創出することも一つの視点となる。無重力空間では、 泡が球体になって漂うといった地上では体験できない現象が生じる。こうした現象を逆に楽し み方として設計することで、宇宙独自の価値を 提供できる可能性がある。

最後に、宇宙で生まれた新しい飲み方を地球に逆輸入することも検討できる。たとえば、無重力の体験を模したグラスや、宇宙での現象を応用した新しい飲料スタイルを地上で商品化することにより、宇宙体験を広く共有できるだろう。

このように、宇宙ビールのサービス提供は、 ①宇宙での実現、②地球での模擬体験、③地球 的再現、④宇宙独自の創造、⑤逆輸入、という 五つの方向性に整理できる。

この枠組みは寿司文化の展開に例えることで 理解が深まる。すなわち、日本で寿司を食べる こと(本来の体験)、海外で日本風寿司を味わ うこと(模倣的体験)、カリフォルニアロール のように現地で新しい形が生まれること(独自 の創造)、さらにそれが日本に逆輸入されるこ と(再定着)といった現象に重ねられる。

宇宙ビールに関するこうした考察は、単なる商品展開にとどまらず、今後「宇宙飲食ホスピタリティ」を発展させていく上での基盤や参考枠組みを提供するものとなり得る。

6. 結論 (Conclusion)

本研究で示したように、飲酒は心理的健康を支え、社交を促進し、文化を継続する力を持っている。そして、それを実現するために必要な技術開発は、飲料管理や船内環境制御など幅広い応用を持ち、宇宙生活全般の質を高める可能性を秘めている。

ASTRAX の宇宙ビール開発は、この文化的・技術的挑戦を「人々の夢」から出発させた実践例である。私たちが目指すのは、単に宇宙で酒を飲むことではなく、人が宇宙で心からくつろげる時間をつくり、それをサービスとして継続的に提供することである。ボランティア的な試みではなく、旅行者にとって価値ある体験として根付かせることで、初めて持続可能な宇宙飲食ホスピタリティが成立する。

その一歩として、無重力フライトでの実証から成層圏気球、そして将来的には宇宙船での提供へと取り組みを進めていく。

こうした挑戦は単なる嗜好の追求ではなく、 宇宙における「暮らし」を形づくる営みであり、 やがて「宇宙での乾杯」が人類にとって普遍的 な宇宙飲食ホスピタリティの象徴となる日が訪 れるだろう。

参考文献

- 【1】民間商業宇宙飛行士と新規宇宙ビジネスの展開について
- 【2】Overview Of ASTRAX Space Services Including Over 50 Space Businesses, 50 以上の宇宙事業を含む ASTRAX の宇宙事業の 概要
- 【3】 ASTRAX Zero Gravity Flight Services In Japan, 日本における ASTRAX 無重力飛行サービス
- 【4】 ASTRAX Lunar City Development Project, ASTRAX 月面都市開発プロジェクト
- 【5】ASTRAX Space Services Platform By Using Blockchain Technology, ブロックチェーン技術を活用したアストラックス宇宙サービスプラットフォーム
- [6] ASTRAX Universal Service Platform By Using Blockchain Technology,

ブロックチェーン技術を活用した ASTRAX のユニバ ーサルサービスプラットフォーム

[7] Mission Control Center To Support Commercial Space Missions And Passenger'S Activities Inside Of The Cabin,

商業宇宙ミッションと乗客の機内活動を支援するミッションコントロールセンター

[8] ASTRAX Academy And Space Business And Space Flight Support Educational System,

IAC-25- E1.9.18 Page 18 of 23

ASTRAX ACADEMY と宇宙ビジネス・宇宙飛行支援教育システム

[9] Mission Support Control Center And Suborbital Spacecraft Simulator To Support Commercial Space Missions And Customer Activities,

商業宇宙ミッションと顧客活動を支援するミッション 支援管制センターとサブオービタル宇宙船シミュレ ータ

[10] Zero G-Naut And Mission Commander To Support Commercial Space Missions And Customer Activities Inside Cabin,

Zero G-Naut と商業宇宙ミッションと顧客活動を支援するミッションコマンダー(船内)

[11] "Space Scooter": Space Mobility System Used In Space Hotels And Space Stations,

「スペーススクーター」宇宙ホテルや宇宙ステーションで使用される宇宙移動システム

[12] ASTRAX Lunar City Development Project 2020.

ASTRAX 月面都市開発プロジェクト 2020

[13] ASTRAX Lunar City Economic System By Using Blockchain Technology,

ブロックチェーン技術を活用した ASTRAX 月面都 市経済システム

[14] ASTRAX Space Service Catalog System For Space Tourism,

宇宙旅行のための ASTRAX 宇宙サービスカタログ システム

[15] ASTRAX Universal Service Platform By Using Blockchain Technology,

ブロックチェーン技術を活用した ASTRAX ユニバー サルサービスプラットフォーム

[16] Experience And Lessons Leaned From The Covid-19 Problem In Japan And Application To Space Travel,

日本の COVID-19 問題から得た経験と教訓、そして宇宙旅行への適用

[17] Zero-G-Naut And Mission Commander To Support Commercial Space Mission And Customer Activities Inside Cabin,

ゼロ G 飛行士とミッションコマンダーが、商業宇宙ミッションと顧客活動を機内でサポートする

- 【18】 Creating A New Business Of Space Flight Attendant Service & SFA Academy, スペースフライトアテンダントと SFA アカデミーという新しいビジネスの創出
- 【19】 The Importance Of Kimono In Space, 宇宙での 着物の重要性
- 【20】 What Women Need For Space Travel, 女性が宇宙へ行くために必要なこと
- 【21】人工衛星を使用した宇宙時代の平和思考と社会経済学(ワンスマイルファンデーションシステム)
- 【22】最新型宇宙サービスアクセスアプリケーションツール「ASTRAX U2U (Universal User Interface)」
- 【23】ASTRAX Lunar City Development Project 2021 ASTRAX 月面シティ開拓プロジェクト 2021
- 【24】Commercial Space Mission Support Control Center and Suborbital Spacecraft Simulator to Support Commercial Space Missions and Passengers Activities in Space

商業宇宙ミッションと宇宙での搭乗者の活動をサポートするための商業宇宙運用支援管制センターとサブオービタル宇宙船シミュレーター

- 【25】Initiative of development of the Solar System Economic Bloc by Using Blockchain Technology ブロックチェーン技術を活用した太陽系経済圏構築 構想
- 【26】Space Fashion and Space Culture in the Age of Space Travel and the Possibilities of "Space Hagoromo"

宇宙旅行時代の宇宙ファッションと宇宙カルチャー及び"宇宙羽衣"の可能性

[27] Making ASTRAX ACADEMY Online and Multilingual

「ASTRAX ACADEMY」のオンライン化と多言語化

【28】Potential Future Plan of Space Izakaya as a Place to Create New Private Space Business 新たな民間宇宙ビジネス創出の場としての宇宙居 酒屋の将来性

【29】Fostering Universal Human Resources and Super Newtypes for the Space Age ユニバーサル人材の育成と宇宙時代のスーパーニ ュータイプの養成

IAC-25- E1.9.18 Page 19 of 23

[30] Demand and Supply Matching by the ASTRAX LUNAR CITY Business Community and Residence Club

ASTRAX 月面シティのビジネスコミュニティとレジデンスクラブによる需要と供給のマッチング

- 【31】Outline of ASTRAX Private Space Business Creation Education and Training Center ASTRAX 民間宇宙事業創出教育訓練センターの概要
- 【32】Prototype plans for various commercial spacecraft training simulators さまざまな民間商用宇宙船訓練用シミュレータの試作計画
- [33] Experiments on Coloring Soap Bubbles under Microgravity

微小重力下でのシャボン玉の着色に関する実験

[34] Study of the selection of location for commercial spaceports in Japan

日本における商業宇宙港の立地選定に関する研究

- 【35】Space Radiation Shielding by Water Dome in ASTRAX Lunar City on the Moon ASTRAX 月面シティのウォータードームによる宇宙 放射線の遮蔽
- [36] Introduction of a practical example of ASTRAX Lunar City mapping with Minecraft and its linkage to Economic Activities on Earth

マインクラフトを使った ASTRAX 月面シティのマッピングの実践例と地球上の経済活動との連携の紹介

【37】Development of a Civilian Spacecraft Interior Simulator Using Minecraft

マインクラフトを用いた民間宇宙船内部シミュレーターの開発

[38] Proposal to Add a Space Economics
Subcommittee to the UN Office for Outer Space
Affairs' Committee on the Peaceful Uses of Outer
Space(COPUOS in UNOOSA)

国連宇宙局の「宇宙空間の平和利用に関する委員会」(COPUOS in UNOOSA)に「宇宙経済小委員会」 を追加する提案

[39] The Gender Gap and Its Impact in Manga, Anime and Other Space Creations

マンガ・アニメなどの空間演出におけるジェンダー・ギャップとその影響

[40] Career Design in Space - From Challenged to Challenging

宇宙でのキャリアデザイン - 挑戦者から挑戦者へ

- 【41】The Effects of Using Minecraft to Teach Children about Space マインクラフトを使って子どもたちに宇宙を教える効 里
- 【42】Maintaining the Health of Pilots and Crew パイロットとクルーの健康維持
- 【43】Consideration on the Creation of a Chicken Egg Market at the Moon Village 月面ビレッジでの鶏卵市場の創設についての検討
- 【44】Consideration of the future prospects of the Space Flight Attendant (SFA) profession with the expansion of space travel marketing 宇宙旅行マーケティングの拡大に伴うスペースフライトアテンダント(SFA)という職業の将来性についての考察
- 【45】Problems and Solutions that are Preventing More Women from Becoming Space Tourists 宇宙旅行者になる一般女性を増やすことを妨げて いる問題点と解決方法
- 【46】Development of a Teripper for intra-spacecraft transportation, 宇宙船内移動用テリッパの開発
- 【47】Possibility of Zero-Gravity Flight Service by MRJ (Mitsubishi Regional Jet), MRJ による無重力飛行サービスの可能性
- 【48】Development of ASTRAX commercial spacecraft education and training simulator, ASTRAX 民間宇宙船教育訓練シミュレーターの開発
- 【49】Development of Space Shower, 宇宙シャワーの開発
- [50] Production of space suits and replicas for space travel.

宇宙旅行のための宇宙服とレプリカの製作

IAC-25- E1.9.18 Page 20 of 23

- 【51】ADVANCED SPACE SERVICE ACCESS APPLICATION TOOL "ASTRAX UNIVERSAL USER INTERFACE (ASTRAX U2U)", 先進の宇宙サービス利用アプリケーションツール「ASTRAX Universal User Interface (ASTRAX U2U)」
- 【52】ASTRAX Solar System Economic Bloc Concept using NFT and Metaverse Technologies, NFT とメタバース技術による ASTRAX 太陽系経済 圏構想
- 【53】Development of a Real-life (Analog) ASTRAX Lunar City Construction Project in Japan, 日本におけるリアル(アナログ) ASTRAX 月面シティ 構築計画
- 【54】Multilingualization of ASTRAX ACADEMY, ASTRAX ACADEMY の多言語化
- 【55】Possibility of zero-gravity flight and space flight by people with disabilities, 暗がいまた。

障がい者による無重力飛行と宇宙飛行における可能性

- 【56】Development of Space Toilet "Space BENKING" in Japan, 宇宙用トイレ「宇宙ベンキング」の開発
- 【57】Disaster prevention and evacuation technologies on Earth and their application to space travel, 地球上の防災・避難生活技術と宇宙旅行への応用
- 【58】Cleaning Methods for Reusing Clothes in Space, 宇宙で衣類を再利用するための洗浄方法
- 【59】How to Go to Space with Different Hairstyles, さまざまなヘアスタイルで宇宙へ行く方法
- [60] Research on Psychological Changes and Growth of Children through Education Related to Commercial Space Business,

商業宇宙事業に関連した教育による子どもの心理 的変化・成長に関する研究

- 【61】What do they need for a space museum?, 宇宙ミュージアムに必要なものは?
- [62] Establishment and development of a lunar community and activity space by children for children,

子どもによる子どものための月面コミュニティ・活動 空間の構築と発展

- 【63】video editing services for space travellers, 宇宙旅行者のためのビデオ編集サービス
- 【64】technologies on a transparent restroom could be used for lunar habitats, 透明なトイレの技術は、月面基地にも応用できる
- 【65】ASTRAX Lunar City Project 2022, ASTRAX 月面シティプロジェクト 2022
- 【66】The need for a space version of hand signals, a communication tool for space travelers, 宇宙旅行者のコミュニケーションツール、宇宙版ハンドシグナルの必要性
- [67] Photography services and techniques required for space travel,

宇宙旅行に必要な写真撮影サービス・技術

- [68] On images of the universe influenced by manga and anime,
- マンガやアニメの影響を受けた宇宙像について
- 【69】A space education program to solve the shortage of commercial space teachers in Japanese schools, 日本の学校における民間宇宙講師不足を解消するための宇宙教育プログラム
- [70] How to capture the cosmic diversity that is coming,

これからやってくる宇宙の多様性をどう捉えるか

- [71] The Role of Space Flight Attendants in Large, Long-duration Space Travel,
- 大規模・長期間の宇宙旅行におけるスペースフライ トアテンダントの役割
- 【72】Proposal for a business model that enables and encourages older adults to travel to space, 高齢者の宇宙旅行を実現・促進するビジネスモデルの提案
- 【73】Development of ASTRAX Zero Gravity Aircraft Education and Training Simulator ASTRAX 無重力飛行機教育訓練シミュレーターの開発
- [74] Developing technology for drinking chilled carbonated beverages in space

IAC-25- E1.9.18 Page 21 of 23

宇宙で炭酸飲料を飲むための技術開発

【75】Development of commercial spacecraft education and training simulator using the Metaverse メタバースを利用した民間宇宙船教育訓練シミュレーターの開発

【76】Construction plan of ASTRAX LUNAR CITY Simulation Facility in Japan 日本における ASTRAX 月面シティシミュレーション施設の構築計画

[77] Development of the space toilet called "Space Benking" 2023

宇宙用トイレ「宇宙ベンキング」の開発 2023

[78] Introduction of commercial space R&D center "ASTRAX LAB" in Japan

日本における民間宇宙開発センター「ASTRAX LAB(アストラックスラボ)」の紹介

[79] Analysis of passengers' needs and demands of ASTRAX Zero Gravity Services and application for space travel services

無重力飛行サービスに対する乗客のニーズ・要 望の分析と宇宙旅行サービスへの応用

[80] The senses and creativity that can be achieved by bringing entertainment in space

宇宙空間でエンターテイメントを実現すること で得られる感覚と創造性

[81] Technology, problems and solutions for drinking alcohol in space

宇宙空間でお酒を飲む際に必要な技術と問題点 および解決方法

[82] Technology, problems, and solutions for space travel meals as represented by "yakitori", grilled chicken

焼き鳥に代表される宇宙旅行での食事に必要な 技術と問題点および解決方法

[83] The Possibility of Developing Japanese Culture through "NATTO" in Space

宇宙空間における納豆を通した日本文化の展開 の可能性

【84】Local revitalization project to turn my hometown, Komono Town, into "space town" 故郷の菰野町を「宇宙の町」にする地方活性化プロジェクト

【85】Methods and Practices for Introducing Private Space Education Programs into Japanese Schools 民間宇宙教育プログラムを日本の学校現場に導 入する方法と実践

【86】Astrology in the Space Age: What will happen to the horoscopes of those born on the Moon? 宇宙時代における占星術 月生まれの人のホロスコープはどうなるの?

【87】COMMERCIAL SPACE SUIT R&D CENTER "ASTRAX WAER LAB" 2024 民間宇宙服研究開発センター『ASTRAX WEAR

LAB』の概要 2024

【88】DEVELOPMENT OF ASTRAX COMMERCIAL SPACECRAFT MISSION SUPPORT CONTROL CENTER IN JAPAN 2024 ASTRAX 民間宇宙船運用支援管制センターの開 発 2024

[89] ASTRAX LUNAR CITY SIMULATION FACILITY CONSTRUCTION PLAN IN JAPAN 2024

日本における ASTRAX 月面シティシミュレーション施設の構築 2024

【90】EXPLORING THE CONCEPT AND POTENTIAL OF SPACE MUSEUMS FOR PRESERVATION, EDUCATION, AND TOURISM 保存、教育、観光のための宇宙博物館のコンセプトと可能性を探る

- 【91】 DEVELOPMENT OF RAMEN EATEN IN SPACE 宇宙で食べるラーメンの開発
- 【92】THE POTENTIAL OF SPACE NFTS 宇宙NFTの可能性
- 【93】UNIFORMS FOR PRIVATE SPACEFLIGHT MISSION COMMANDERS AND SPACE FLIGHT ATTENDANTS 民間宇宙飛行士 ミッションコマンダーや宇宙フライトアテンダ ントの制服
- 【94】DEVELOPMENT AND EXPANSION OF NEW BEVERAGES FOR THE COMMERCIAL SPACE TRAVEL ERA 民間宇宙旅行時代の新た な飲料開発と展開
- 【95】 A VERSATILE SPACE APPLICATION TOOL TO SUPPORT LIFE IN SPACE:

IAC-25- E1.9.18 Page 22 of 23

- INTRODUCTION TO ASTRAX U2U 宇宙での生活をサポートするための万能宇宙アプリケーションツール: ASTRAX U2U (Universal User Interface)の紹介
- 【96】A SPACE VALUE STANDARD TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX VALUE 宇宙での生活をサポートする ための宇宙価値基準: ASTRAX VALUE の紹介
- 【97】 DEVELOPMENT OF ASTRAX SPACE MISSION SUPPORT CONTROL CENTER 2025ASTRAX 民間宇宙船運用支援管制センター の開発 2025
- 【98】ASTRAX LUNAR CITY PROJECT 2025ASTRAX 月面シティプロジェクト 2025
- 【99】CONSTRUCTION PLAN OF ASTRAX LUNAR CITY SIMULATION FACILITY IN JAPAN 2025 日本における ASTRAX 月面シティ シミュレーション施設の構築 2025
- 【100】IMPLEMENTING A RURAL REVITALIZATION PROJECT TO TURN MY HOMETOWN, KOMONO TOWN, INTO A 'SPACE TOWN'故郷・菰野町を「宇宙のまち」に変える 地域活性化プロジェクトの実施
- 【101】WHO GOVERNS SPACE MUSEUMS? LEGAL AND POLICY CHALLENGES IN THE NEW SPACE ERA 宇宙ミュージアムは誰が管理 するのか?新たな宇宙時代における法的・政策 的課題
- 【102】ESTABLISHING A CULTURE OF DRINKING IN SPACE: REALIZING A BEER EXPERIENCE IN SPACE EQUIVALENT TO THAT ON EARTH 宇宙での飲酒文化の確立:地 上と変わらないビール体験を宇宙で実現する
- 【103】SPACE BUSINESS DEVELOPMENT EDUCATION AND TRAINING ACADEMY: ASTRAX ACADEMY 2025 民間宇宙事業創造教育訓練機関 ASTRAX ACADEMY について 2025
- [104] SpaceNews. (2009, December 4). Sapporo Space Barley Beer is launched onto the market for the first time in the world in limited quantities for charity. https://spacenews.com/sapporospace-barley-beer-is-launched-onto-the-market-for-the-first-time-in-the-world-in-

- <u>limited-quantities-for-charity/. (</u>accessed 11 Sep 2025).
- [105]Anheuser-Busch. (2017). Budweiser sends barley seeds to the ISS for beer experiment. https://www.collectspace.com/news/news-112117b-budweiser-mars-beer-space-station.html. (accessed 11 Sep 2025).
- [106]University of Florida. (2024). Beer yeast fermentation under simulated microgravity. Beverages. https://news.ufl.edu/2024/08/beerin-space/. (accessed 11 Sep 2025).
- [107]Starbase Brewing. (2025). OASIS Experiment; MicroBrew-1 Experiment.
 - https://starbasebrewery.com/pages/growing-crops-in-regolith-in-space. (accessed 11 Sep 2025).
- [108] Sciencing. (2023, August 23). There's a reason alcohol is banned on the International Space Station but it's not what you think.
 - https://www.sciencing.com/1830319/reason-alcohol-drinks-banned-international-space-station-not-what-you-think/. (assecced 11 Sep 2025).
- [109]McGovern, P. E. (2009). Uncorking the past: The quest for wine, beer, and other alcoholic beverages. University of California Press.
- [110] BBC Future. (2017, February 17). Why astronauts are banned from getting drunk in space. BBC. https://www.bbc.com/future/article/20170217-why-astronauts-are-banned-from-getting-drunk-in-space. (accessed 11 Sep 2025).

IAC-25- E1.9.18 Page 23 of 23