IAC-25-B3.4-B6.4.12 (x101592)

DEVELOPMENT OF ASTRAX SPACE MISSION SUPPORT CONTROL CENTER 2025

Taichi Yamazakia*, Taiko Kawakamib

a CEO and Astronaut, ASTRAX, Inc., 2-23-17 Komachi, Kamakura, Kanagawa, 248-0006, Japan, taichi.yamazaki@astrax.space
 b General Manager, ASTRAX, Inc., 1-1-4-301 Mukogaoka, Bunkyo, Tokyo, Japan 113-0023, taiko.kawakami@astrax.space
 * Corresponding Author

Abstract

ASTRAX has built a new third-generation ASTRAX Space Mission Support Control Center to support the missions that customers carry out on board private spacecraft during space flights in preparation for the arrival of the era of private space travel. This control center is a modified American-made camper "Airstream 345" and is mobile.

This control center can provide mission support in conjunction with various commercial spacecraft education and training simulators owned by ASTRAX when space travelers conduct ground training and pre-rehearsals for various space missions. In addition, half of the center is also a space life training facility, allowing them to experience a long-term stay at a commercial space base.

This paper presents an overview of the mobile civilian spacecraft operations support control center newly constructed by ASTRAX, focusing on the space habitation education and training facility co-located in its rear section, along with its potential future applications.

Keywords: mission support, mission support control center, space habitation, education and training, commercial spaceflight, Space Habitat Training Facility

1. Introduction

With the launch of commercial space travel services in 2021, people from diverse backgrounds from around the world are flying into space and carrying out a variety of missions and projects. As a result, humanity's living space and sphere of activity are steadily expanding into space, further expanding its possibilities.

In preparation for the arrival of the era of commercial space travel, ASTRAX has been building various support and education/training systems to support commercial spaceflight since 2005.

As a key component of this, ASTRAX has been building its own Space Mission Support Control Center since 2015. This control center provides ground support for the various missions and projects carried out by customers on board private spacecraft during their spaceflight, in coordination with the commercial astronauts (mission commanders) on board.

First- and second-generation Space Mission Support Control Center were fixed, immobile control centers installed within buildings. While fixed control centers have many advantages, they have the disadvantage of requiring users to come to the facility to use them. Therefore, ASTRAX's third-generation control center is mobile, with the control system installed inside a camper van.

The important function of Space Mission Support Control Center is the addition of a space habitat education and training facility that allows for long-term accommodation. This is so that, in the event that spacecraft operations are conducted 24 hours a day, control staff can work in shifts.

At the same time, by simulating long-term habitat conditions in space, it is possible to not only support mission operations, but also simulate and provide education and training on the living environment in space.

This paper provides an overall overview of the thirdgeneration mobile ASTRAX Space Mission Support Control Center that has been under development since 2023 (see reference [88] for details), as well as explain the details of the space habitat education and training facility and its potential uses.

2. Overview of the Space Mission Support Control Center r and Space Habitat Education and Training Facility

The ASTRAX Space Mission Support Control Center consists of the Space Mission Support Control Center (forward section of the Airstream 345) and the Space Habitat Education and Training Facility (aft section of the same).

First, we will explain the overall structure (external structure), internal structure, and various functions.

2.1 Overall Structure (External Structure)

2.1.1 Main Unit

The ASTRAX Space Mission Support Control Center was built using an Airstream 345 camper van manufactured by the American company Airstream. The exteriors are shown in Figures 1 and 2.

For details, see Reference [88].

Fig. 1 Exterior of the ASTRAX Space Mission Support Control Center

Fig. 2 Exterior of the ASTRAX Space Mission Support Control Center

2.1.2 External Connections

(1) Power System

One fixed solar panel and three portable solar panels are installed around the main unit, providing most of the power required for operation through solar energy.

However, the internet access used to remotely control internal equipment, as well as the emergency lights and refrigerator, require constant power. Therefore, an

external power source is used to ensure power supply even in the event of a malfunction in the solar power generation system. Therefore, the main unit is connected to an external power source using a power cable.

(2) Communications System (Internet)

An optical fiber cable is connected to the main body from an external source to access high-speed internet. In addition, Starlink became available as a new feature in 2025 (using Starlink Mini).

This allows satellite internet communication via the Starlink system even when terrestrial optical internet is unavailable or when internet or Wi-Fi is unavailable at the destination.

(3) Environmental System (Water Supply)

Water used within the facility (kitchen, toilet, shower) is supplied via an external water hose (well water is used).

2.2 Internal Structure

The front half of the main body (interior) serves as the Space Mission Support Control Center (Fig. 3), while the rear half serves as the Space Habitat Education and Training Facility (Fig. 4).

Fig. 3 Space Mission Support Control Center

Fig. 4 Space Habitat Education and Training Facility

2.2.1 Overview of the Space Mission Support Control Center (Front Section of the Vehicle)

The front section of the vehicle serves as the control area for mission support, connecting the spacecraft education and training simulator and the actual spacecraft via internet. It is equipped with numerous monitors and two seats, allowing for communication, monitoring, and mission support from the ground.

These facilities and functions can also be used for purposes other than spacecraft operational support and control.

For details on the facilities and functions in the front section of the vehicle and examples of their use, please refer to reference [88].

2.2.2 Overview of the Space Habitat Training Facility (Rear Section of the Vehicle)

The rear section of the vehicle is the space habitat education and training area.

Normally (when the vehicle is stationary), accommodation is provided to provide 24-hour support when using the Mission Control Center. It can also be used as accommodation when the vehicle is mobile.

The facility is also used for simulations of eating, sleeping, toileting, showering, and other aspects of space use, as well as for research and development and education and training.

2.3 Roles and Functions

2.3.1 Roles and Functional Overview of the Overall Facility

For details on the roles and functions of the entire facility on board, see Reference [88].

A new feature added in 2025 is the availability of Starlink, enabling the provision and use of an internet environment using satellite communications via Starlink antennas, even when there is no internet or Wi-Fi at the destination.

2.3.2 Roles and Functional Overview of the Space Mission Support Control Center

(1) Roles of the Space Mission Support Control Center

The **Space Mission Support Control Center**'s main roles are as follows:

- 1) Supporting space missions by monitoring the status inside the spacecraft from the ground during actual spaceflight.
- 2) Conducting education, training, simulations, and rehearsals for each mission using the Commercial Spacecraft Education and Training Simulator.
- 3) A place for hands-on experience and training in operations supporting spacecraft missions.
- 4) A place for research and development of technologies necessary to support spacecraft missions.
- 5) A control center for relocating the entire ASTRAX Space Mission Support Control Center to support spacecraft operations at a different location.

(2) Functions of the Mission Control Center

No new functions were added to this control center in 2025, so this paper does not include any further information. For details on the control center's functions, see references [88].

2.3.3 Roles and Overview of the Space Habitat Education and Training Facility

(1) Roles of the Space Habitat Education and Training Facility

The Space Habitat Education and Training Facility has the following main roles:

- 1) Accommodation for 24-hour monitoring and support when using the Space Mission Support Control Center during actual space missions.
- 2) Accommodation for education, training, simulations, and rehearsals to monitor and support missions 24-hour when using the Space Mission Support Control Center.
- 3) A place for space life experience and education and training.
- 4) A place for research and development of technologies required for living in space.
- 5) Accommodation in case the entire ASTRAX Space Mission Support Control Center is relocated and used elsewhere.

(2) Functions of the Space Habitat Education and Training Facility

The functions of the Space Habitat Education and Training Facility are summarized in detail in Section 3.

toilet in the future. (Fig. 5) For information on the development of space toilets, see Reference [56][77].

3. About the Space Habitat Education and Training Facility

The Space Habitat Education and Training Facility is equipped with the following facilities:

3.1 Work Area

The workspace is equipped with a folding table and facing bench seats that can seat up to four people. (Fig. 3) These are typically used as worktables and for meals.

The table can be removed, the tabletop lowered, and a cushioned mat laid down to create a bed.

Fig. 5 Workspace

3.2 Kitchen Area

At kitchen area, one tap (cold and hot water), two small sinks, a rice cooker, an electric stove, an electric kettle, a refrigerator, and more are available. (Fig. 4)

Fig. 6 Kitchen

3.3 Toilet

Currently, the facility is equipped with a standard faucet toilet, but plans call for the installation of a space-specific

Fig. 7 Toilet

3.4 Shower Room

Currently, the facility is equipped with a standard shower (Fig. 6), but plans call for upgrading it to a space-specific shower in the future. For information on the development of space showers, see Reference [49].

Fig. 8 Shower Room

3.5 Sleeping Area

Equipped with a queen-size bed, this sleeping area can accommodate up to two people (Fig. 7). Currently, standard ground beds are installed, but the area will be used to develop space-use sleeping accommodations (bedding).

Four large portable batteries (two controllable and two extra batteries) are also installed in this area, storing electricity generated by external solar panels and providing power to various devices within the facility.

This area also houses a residential air conditioner, powered by the batteries mentioned above. The air conditioner can also be controlled remotely via the internet or Alexa.

Fig. 9 Sleeping Area

3.6 Storage Space

Storage spaces are provided throughout the area, allowing for the storage of a variety of items, including clothing, groceries, tableware, daily necessities, and tools.

3.7 Power Supply

Equipment within the facility is primarily powered by four storage batteries. However, emergency lighting, refrigerators, and internet access (necessary for external control) require constant power, as do electric kettles, electric stoves, microwaves, and rice cookers, which require large amounts of power momentarily during use. These appliances normally use external power sources rather than storage batteries.

When the entire facility is moved, power can be supplied from the power company or via solar panels and storage batteries, ensuring use no matter where it is moved.

3.8 Internet

The facility is equipped with fiber-optic internet lines and routers, and Wi-Fi is also available.

In addition, Starlink, a new feature added in 2025, allows access to the internet via satellite communications via Starlink antennas, even when no internet connection is available at the destination.

3.9 Voice Control System (Alexa)

Most of the equipment within the facility can be controlled by voice using Amazon's Alexa and related devices. Alexa's camera function also allows monitoring of the facility's status from outside. With the addition of two Alexas in 2025, the range of monitoring has expanded.

4. Future Utilization and Improvement Plans

The following are anticipated future utilization and improvement plans.

4.1 Utilization Plans

4.1.1 Utilization Plans Related to Space Flight

- (1) Commercial Space Flight Pre-Training Programs
- (2) Commercial Space Flight Pre-Training Simulations and Rehearsals
- (3) Habitat Training in Conjunction with the Commercial Spacecraft Education and Training Simulator
- (4) Psychological and Physical Support for Commercial Space Tourists
- (5) Creating and Implementing Various Space Habitat Education and Training Experiences (Part of the ASTRAX ACADEMY Education and Training Program)
- (6) Space Habitat Simulation Experience Programs (Public Education)
- (7) Education and Training Programs in Collaboration with Local Schools and Educational Institutions
- (8) Mobile Space Habitat Education and Training at Other Locations

4.1.2 Utilization Plans Other than Space Flight

(1) Expanding Functions as a Mobile Control Center (Domestic and International Travel, Events, and Educational Use)

- (2) Collaboration with Other Mobile Facilities
- (3) Research Use (Ergonomics and Life Science Experiments and Research)
- (4) Use as a Mobile Support Base and Temporary Completion Center in the Event of a Disaster
- (5) Educational and training programs simulating life in a disaster evacuation shelter
- (6) Collaborative planning with actual zero gravity flights services
- (7) International expansion (overseas events and collaboration with partner companies)
- (8) Advanced application to future the Moon and Mars base support and control systems
- (9) Use in regional space education events
- (10) Collaboration with missions by other space-related companies etc.

4.2 Improvement Plan

4.2.1 Space Mission Support Control Center Improvement Plan

We believe that by building a system that allows mission support and control via smartphones and tablets, as well as online, in addition to the physical control center within the facility and linking it with the facility, we can further expand mobility and scalability.

4.2.2 Space Habitat Education and Training Facility Improvement Plan

- (1) Regarding toilets, we will install and enable use of the space toilets currently under development by ASTRAX.
- (2) Regarding showers, we will use them to research and develop showers that can be used in zero gravity conditions.
- (3) Strengthen the battery capacity to enable completely independent operation without relying on an external power source.

5. Conclusion

The mobile ASTRAX Space Mission Support Control Center will serve as a flexible and practical mission support platform for the widespread adoption of commercial space travel.

It will also play a significant social role not only as the "standard infrastructure for space travel" but also as the "standard infrastructure for disasters on Earth."

ASTRAX will continue to utilize this and other facilities, equipment, and technologies to contribute to the promotion of commercial space exploration. We also plan to develop technologies and cultivate human resources to make life in space and life on Earth both easy, free, comfortable, and enjoyable.

References

Reference to a conference/congress paper:

- [1] T. Yamazaki, 民間商業宇宙飛行士と新規宇宙ビジネスの展開について、3D18、50th Space Science and Technology Conference, Kita Kyushu, Japan, 2006、8-10 November.
- [2] T. Yamazaki, OVERVIEW OF ASTRAX SPACE SERVICES INCLUDING OVER 50 SPACE BUSINESSES, ISDC-2018-Many Roads to Space, International Space Development Conference 2018, Los Angeles, USA, 2018, 24-27 May.
- [3] T. Yamazaki, ASTRAX ZERO GRAVITY FLIGHT SERVICES IN JAPAN, ISDC-2018-Many Roads to Space, International Space Development Conference 2018, Los Angeles, USA, 2018, 24-27 May.
- [4] T. Yamazaki, ASTRAX LUNAR CITY DEVELOPMENT PROJECT, ISDC-2019-Many Roads to Space, International Space Development Conference 2019, Washington D.C., USA, 2019, 5-9 June.
- [5] T. Yamazaki, ASTRAX SPACE SERVICES PLATFORM BY USING BLOCKCHAIN TECHNOLOGY, ISDC-2019-Many Roads to Space, International Space Development Conference 2019, Washington D.C., USA, 2019, 5-9 June.
- [6] Taichi Yamazaki, Buhe Heshige, Yoshihide Nagase, ASTRAX UNIVERSAL SERVICE PLATFORM BY USING BLOCKCHAIN TECHNOLOGY, IAC-19- E6.5-GST.1.6, 70th International Astronautical Congress (IAC), Washington D.C., United States, 2019, 21-25 October.
- [7] Taichi Yamazaki, MISSION CONTROL CENTER TO SUPPORT COMMERCIAL SPACE MISSIONS AND PASSENGER'S ACTIVITIES INSIDE OF THE CABIN, IAC-19-B3.2.3, 70th International Astronautical Congress (IAC), Washington D.C., United States, 2019, 21-25 October.

- [8] Taichi Yamazaki, ASTRAX ACADEMY AND SPACE BUSINESS AND SPACE FLIGHT SUPPORT EDUCATIONAL SYSTEM, Next-Generation Suborbital Researchers Conference (NSRC), Broomfield, CO, United States, 2020, 2-4 March.
- [9] Taichi Yamazaki, MISSION SUPPORT CONTROL CENTER AND SUBORBITAL SPACECRAFT SIMULATOR TO SUPPORT COMMERCIAL SPACE MISSIONS AND CUSTOMER ACTIVITIES, Next-Generation Suborbital Researchers Conference (NSRC), Broomfield, CO, United States, 2020, 2-4 March.
- [10] Taichi Yamazaki, ZEROG-NAUT AND MISSION COMMANDER TO SUPPORT COMMERCIAL SPACE MISSIONS AND CUSTOMER ACTIVITIES INSIDE CABIN, Next-Generation Suborbital Researchers Conference (NSRC), Broomfield, CO, United States, 2020, 2-4 March.
- [11] Taichi Yamazaki, "SPACE SCOOTER": SPACE MOBILITY SYSTEM USED IN SPACE HOTELS AND SPACE STATIONS, IAC-20-B3.7.17, 71 International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [12] Taichi Yamazaki, ASTRAX LUNAR CITY DEVELOPMENT PROJECT 2020, IAC-20-D4.2.11, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [13] Taichi Yamazaki, ASTRAX LUNAR CITY ECONOMIC SYSTEM BY USING BLOCKCHAIN TECHNOLOGY, IAC-20-E6.2.9, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [14] Taichi Yamazaki, ASTRAX SPACE SERVICE CATALOG SYSTEM FOR SPACE TOURISM, IAC- 20-B3.2.12, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [15] Taichi Yamazaki, ASTRAX UNIVERSAL SERVICE PLATFORM BY USING BLOCKCHAIN TECHNOLOGY, IAC-20-D4.1.20, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [16] Taichi Yamazaki, EXPERIENCE AND LESSONS LEANED FROM THE COVID-19 PROBLEM IN JAPAN AND APPLICATION TO SPACE TRAVEL, IAC-20-A1.3.15, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [17] Taichi Yamazaki, ZERO-G-NAUT AND MISSION COMMANDER TO SUPPORT COMMERCIAL SPACE MISSION AND CUSTOMER ACTIVITIES INSIDE CABIN, IAC-

- 20-B3.2.13, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [18] Chieko Takahashi, Yuko Kirihara, Creating a new business of Space Flight Attendant service & SFA Academy, IAC-20-B3.2.10, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [19] Taiko Kawakami, Taichi Yamazaki, THE IMPORTANCE OF KIMONO IN SPACE, IAC-20-E1.9.2, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [20] Taiko Kawakami, Taichi Yamazaki, WHAT WOMEN NEED FOR SPACE TRAVEL, IAC-20-E3.2.9, 71st International Astronautical Congress (IAC), The CyberSpace Edition, 2020, 12-14 October.
- [21] Hayaki Tsuji, Taichi Yamazaki, Satoshi Takamura, Yoichi Sugiura, PEACE THOUGHT AND SOCIO-ECONOMY FOR THE SPACE AGE USING SATELLITES, IAC-20-E5.5.5, 71st International Astronautical Congress (IAC) The CyberSpace Edition, 2020, 12-14 October.
- [22] Taichi Yamazaki, ADVANCED SPACE SERVICE ACCESS APPLICATION TOOL: ASTRAX UNIVERSAL USER INTERFACE (U2U), IAC-20-B3.1.11, 71st International Astronautical Congress (IAC) – The CyberSpace Edition, 2020, 12-14 October.
- [23] Taichi Yamazaki, Taiko Kawakami, ASTRAX LUNAR CITY DEVELOPMENT PROJECT 2021, IAC-21-D3.1.6, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [24] Taichi Yamazaki, COMMERCIAL SPACE MISSION SUPPORT CONTROL CENTER AND SUBORBITAL SPACECRAFT SIMULATOR TO SUPPORT COMMERCIAL SPACE MISSIONS AND PASSENGERS ACTIVITIES IN SPACE, IAC-21-B6.2.12, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [25] Taichi Yamazaki, INITIATIVE OF DEVELOPMENT OF THE SOLAR SYSTEM ECONOMIC BLOC BY USING BLOCKCHAIN TECHNOLOGY, IAC-21-D4.1.11, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [26] Taichi Yamazaki, Mika Islam, SPACE FASHION AND SPACE CULTURE IN THE AGE OF SPACE TRAVEL AND THE POSSIBILITIES OF "SPACE HAGOROMO", IAC-21-E5.3.6, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.

- [27] Taichi Yamazaki, Taiko Kawakami, Keiichi Iwasaki, Akifumi Mimura, MAKING ASTRAX ACADEMY ONLINE AND MULTILINGUAL, IAC-21-E1.7.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [28] Taichi Yamazaki, POTENTIAL FUTURE PLAN OF SPACE IZAKAYA AS A PLACE TO CREATE NEW PRIVATE SPACE BUSINESS, IAC-21-E1.9.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [29] Taichi Yamazaki, FOSTERING UNIVERSAL HUMAN RESOURCES AND SUPER NEWTYPES FOR THE SPACE AGE, IAC-21-E1.9.8, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [30] Taichi Yamazaki, Shunsuke Chiba, DEMAND AND SUPPLY MATCHING BY THE ASTRAX LUNAR CITY BUSINESS COMMUNITY AND RESIDENCE CLUB, IAC-21-D3.3.3, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [31] Taichi Yamazaki, OUTLINE OF ASTRAX PRIVATE SPACE BUSINESS CREATION EDUCATION AND TRAINING CENTER, IAC-21-B3.2.5, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [32] Taichi Yamazaki, PROTOTYPE PLANS FOR VARIOUS COMMERCIAL SPACECRAFT TRAINING SIMULATORS, IAC-21-B3.2.2, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [33] Taichi Yamazaki, Yuki Yamazaki, EXPERIMENTS ON COLORING SOAP BUBBLES UNDER MICROGRAVITY, IAC-21-A2.6.5, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [34] Taichi Yamazaki, STUDY OF THE SELECTION OF LOCATION FOR COMMERCIAL SPACEPORTS IN JAPAN, IAC-21-D6.3.8, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [35] Taichi Yamazaki, SPACE RADIATION SHIELDING BY WATER DOME IN ASTRAX LUNAR CITY ON THE MOON, IAC-21-A1.5.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [36] Taichi Yamazaki, Hiroki Nakaegawa, INTRODUCTION OF A PRACTICAL EXAMPLE OF ASTRAX LUNAR CITY MAPPING WITH MINECRAFT AND ITS LINKAGE TO ECONOMIC ACTIVITIES ON EARTH, IAC-21-D4.2.6, 72nd International Astronautical Congress

- (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [37] Taichi Yamazaki, Hiroki Nakaegawa, DEVELOPMENT OF A CIVILIAN SPACECRAFT INTERIOR SIMULATOR USING MINECRAFT, IAC-21-B6.3.11, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [38] Taichi Yamazaki, PROPOSAL TO ADD A SPACE ECONOMICS SUBCOMMITTEE TO THE UN OFFICE FOR OUTER SPACE AFFAIRS' COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE (COPUOS IN UNOOSA), IAC-21-E3.4.7, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [39] Ayako Kurono, Haruto Kurono, Taichi Yamazaki, THE GENDER GAP AND ITS IMPACT IN MANGA, ANIME AND OTHER SPACE CREATIONS, IAC-21-E5.3.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [40] Ayako Kurono, Haruto Kurono, Taichi Yamazaki, CAREER DESIGN IN SPACE - FROM CHALLENGED TO CHALLENGING, IAC-21-B3.9-GTS.2.1, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [41] Haruto Kurono, Ayako Kurono, Taichi Yamazaki, THE EFFECTS OF USING MINECRAFT TO TEACH CHILDREN ABOUT SPACE, IAC-21-E1.8.2, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [42] Tomoko Imaizumi, Taichi Yamazaki, MAINTAINING THE HEALTH OF PILOTS AND CREW, IAC-21-D6.3.4, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [43] Taichi Yamazaki, Mami Oka, CONSIDERATION ON THE CREATION OF A CHICKEN EGG MARKET AT THE MOON VILLAGE, IAC-21-D4.2.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [44] Chieko Takahashi, Yuko Kirihara, Taichi Yamazaki, CONSIDERATION OF THE FUTURE PROSPECTS OF THE SPACE FLIGHT ATTENDANT(SFA) PROFESSION WITH THE EXPANSION OF SPACE TRAVEL MARKETING.IAC-21-B3.9-GTS.2.10, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [45] Taiko Kawakami, Taichi Yamazaki, PROBLEMS AND SOLUTIONS THAT ARE PREVENTING MORE WOMEN FROM BECOMING SPACE

- TOURISTS, IAC-21-B3.2.3, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 2021, 25-29 October.
- [46] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF A TERIPPER FOR INTRA-SPACECRAFT TRANSPORTATION, IAC-22-A1.3.17, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [47] Taichi Yamazaki, Taiko Kawakami, POSSIBILITY OF ZERO-GRAVITY FLIGHT SERVICE BY MRJ (MITSUBISHI REGIONAL JET), IAC-22-A2.IPB.1, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [48] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF ASTRAX COMMERCIAL SPACECRAFT EDUCATION AND TRAINING SIMULATOR, IAC-22-B3.IPB.4, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [49] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF SPACE SHOWER, IAC-22-B3.3.5, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [50] Taichi Yamazaki, Taiko Kawakami, PRODUCTION OF SPACE SUITS AND REPLICAS FOR SPACE TRAVEL, IAC-22-B3.9-GTS.2.1, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [51] Taichi Yamazaki, Taiko Kawakami, ADVANCED SPACE SERVICE ACCESS APPLICATION TOOL "ASTRAX UNIVERSAL USER INTERFACE (ASTRAX U2U)", IAC-22-B5.IP.7, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [52] Taichi Yamazaki, Taiko Kawakami, ASTRAX SOLAR SYSTEM ECONOMIC BLOC CONCEPT USING NFT AND METAVERSE TECHNOLOGIES, IAC-22-D4.1.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [53] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF A REAL-LIFE (ANALOG) ASTRAX LUNAR CITY CONSTRUCTION PROJECT IN JAPAN, IAC-22-D4.2.6, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [54] Taichi Yamazaki, Taiko Kawakami, MULTILINGUALIZATION OF ASTRAX ACADEMY, IAC-22-E1.7.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.

- [55] Taichi Yamazaki, Taiko Kawakami, POSSIBILITY OF ZERO-GRAVITY FLIGHT AND SPACE FLIGHT BY PEOPLE WITH DISABILITIES, IAC-22-E1.9.18, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [56] Taichi Yamazaki, Kentaro Chimura, Taiko Kawakami, DEVELOPMENT OF SPACE TOILET "SPACE BENKING" IN JAPAN, IAC-22-E5.IP.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [57] Taichi Yamazaki, Taiko Kawakami, DISASTER PREVENTION AND EVACUATION TECHNOLOGIES ON EARTH AND THEIR APPLICATION TO SPACE TRAVEL, IAC-22-E5.4.9, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [58] Mika Islam, Taichi Yamazaki, CLEANING METHODS FOR REUSING CLOTHES IN SPACE, IAC-22-B3.7.7, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [59] Mika Islam, Taichi Yamazaki, HOW TO GO TO SPACE WITH DIFFERENT HAIRSTYLES, IAC-22-E1.9.7, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [60] Yuko Kirihara, Airi Negisawa, Chieko Takahashi, Taichi Yamazaki, Cocoro Tamura, RESEARCH ON PSYCHOLOGICAL CHANGES AND GROWTH OF CHILDREN THROUGH EDUCATION RELATED TO COMMERCIAL SPACE BUSINESS, IAC-22-E1.IPB.9, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [61] Ayako Kurono, Taichi Yamazaki, WHAT DO THEY NEED FOR A SPACE MUSEUM?, IAC-22-E5.5.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [62] Haruto Kurono, Taichi Yamazaki, ESTABLISHMENT AND DEVELOPMENT OF A LUNAR COMMUNITY AND ACTIVITY SPACE BY CHILDREN FOR CHILDREN, IAC-22-D4.2.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [63] Akifumi Mimura, Taichi Yamazaki, VIDEO EDITING SERVICES FOR SPACE TRAVELLERS, IAC-22-B3.2.6, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [64] Akifumi Mimura, Taichi Yamazaki, TECHNOLOGIES ON A TRANSPARENT RESTROOM COULD BE USED FOR LUNAR HABITATS, IAC-22-E5.1.8, 73rd

- International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [65] Taiko Kawakami, Taichi Yamazaki, ASTRAX LUNAR CITY PROJECT 2022, IAC-22-D3.1.12, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [66] Chikako Murayama, Taichi Yamazaki, THE NEED FOR A SPACE VERSION OF HAND SIGNALS, A COMMUNICATION TOOL FOR SPACE TRAVELERS, IAC-22-B3.2.1, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [67] Chikako Murayama, Taichi Yamazaki, Taiko Kawakami, PHOTOGRAPHY SERVICES AND TECHNIQUES REQUIRED FOR SPACE TRAVEL, IAC-22-D6.1.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [68] Chikako Murayama, Taichi Yamazaki, ON IMAGES OF THE UNIVERSE INFLUENCED BY MANGA AND ANIME, IAC-22-E1.9.3, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [69] Hikaru Otsuka, Taichi Yamazaki, A SPACE EDUCATION PROGRAM TO SOLVE THE SHORTAGE OF COMMERCIAL SPACE TEACHERS IN JAPANESE SCHOOLS, IAC-22-E1.7.8, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [70] Yasuko Fukushima, Taichi Yamazaki, HOW TO CAPTURE THE COSMIC DIVERSITY THAT IS COMING, IAC-22-E1.9.22, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [71] Chieko Takahashi, Taichi Yamazaki, THE ROLE OF SPACE FLIGHT ATTENDANTS IN LARGE, LONG-DURATION SPACE TRAVEL, IAC-22-B3.2.10, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [72] Kiyomi Shigematsu, Taichi Yamazaki, PROPOSAL FOR A BUSINESS MODEL THAT ENABLES AND ENCOURAGES OLDER ADULTS TO TRAVEL TO SPACE, IAC-22-E5.IP.22, 73rd International Astronautical Congress (IAC), Paris, France, 2022, 18-22 September.
- [73] Taichi Yamazaki, Taiko Kawakami, Fumihiro Oiwa, DEVELOPMENT OF ASTRAX ZERO GRAVITY AIRCRAFT EDUCATION AND TRAINING SIMULATOR, IAC-23-A2.5.9, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [74] Taichi Yamazaki, Taiko Kawakami, DEVELOPING TECHNOLOGY FOR DRINKING CHILLED CARBONATED BEVERAGES IN SPACE, IAC-23-B5.1.11, 74th International

- Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October."
- [75] Taichi Yamazaki, Taiko Kawakami, Hiroki Nakaegawa, DEVELOPMENT OF COMMERCIAL SPACECRAFT EDUCATION AND TRAINING SIMULATOR USING THE METAVERSE, IAC-23-D1.1.6, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [76] Taichi Yamazaki, Taiko Kawakami, CONSTRUCTION PLAN OF ASTRAX LUNAR CITY SIMULATION FACILITY IN JAPAN, IAC-23-D4.2.9, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [77] Taichi Yamazaki, Taiko Kawakami, Kentaro Chimura, DEVELOPMENT OF THE SPACE TOILET CALLED "SPACE BENKING" 2023, IAC-23-E5.4.3, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [78] Taichi Yamazaki, Taiko Kawakami, INTRODUCTION OF COMMERCIAL SPACE R&D CENTER "ASTRAX LAB" IN JAPAN, IAC-23-B3.IPB.5, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [79] Taichi Yamazaki, Taiko Kawakami, ANALYSIS OF PASSENGERS' NEEDS AND DEMANDS OF ASTRAX ZERO GRAVITY SERVICES AND APPLICATION FOR SPACE TRAVEL SERVICES, IAC-23-B3.IP.1, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [80] Taiko Kawakami, Taichi Yamazaki, THE SENSES AND CREATIVITY THAT CAN BE ACHIEVED BY BRINGING ENTERTAINMENT IN SPACE, IAC-23-E1.IP.22, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [81] Taiko Kawakami, Taichi Yamazaki, TECHNOLOGY, PROBLEMS AND SOLUTIONS FOR DRINKING ALCOHOL IN SPACE, IAC-23-E1.9.2, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [82] Taiko Kawakami, Taichi Yamazaki, TECHNOLOGY, PROBLEMS, AND SOLUTIONS FOR SPACE TRAVEL MEALS AS REPRESENTED BY "YAKITORI", GRILLED CHICKEN, IAC-23-B5.IP.2, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October."
- [83] Taiko Kawakami, Taichi Yamazaki, THE POSSIBILITY OF DEVELOPING JAPANESE CULTURE THROUGH "NATTO" IN SPACE, IAC-23-E5.IP.17, 74th International Astronautical

- Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [84] Hikaru Otsuka, Taichi Yamazaki, LOCAL REVITALIZATION PROJECT TO TURN MY HOMETOWN, KOMONO TOWN, INTO "SPACE TOWN", IAC-23-E1.9.3, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [85] Hikaru Otsuka, Taichi Yamazaki, METHODS AND PRACTICES FOR INTRODUCING PRIVATE SPACE EDUCATION PROGRAMS INTO JAPANESE SCHOOLS, IAC-23-E1.2.8, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [86] Masahiko Takehara, Taichi Yamazaki, ASTROLOGY IN THE SPACE AGE: WHAT WILL HAPPEN TO THE HOROSCOPES OF THOSE BORN ON THE MOON?, IAC-23-E1.9.8, 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2023, 2-6 October.
- [87] Taichi Yamazaki, Taiko Kawakami, COMMERCIAL SPACE SUIT R&D CENTER "ASTRAX WAER LAB" 2024, IAC-24-E5,IP,26, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [88] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF ASTRAX COMMERCIAL SPACECRAFT MISSION SUPPORT CONTROL CENTER IN JAPAN 2024, IAC-24-B6,1,8, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [89] Taichi Yamazaki, Taiko Kawakami, ASTRAX LUNAR CITY SIMULATION FACILITY CONSTRUCTION PLAN IN JAPAN 2024, IAC-24-D4,2,9, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [90] Ayako Kurono, Taichi Yamazaki, EXPLORING THE CONCEPT AND POTENTIAL OF SPACE MUSEUMS FOR PRESERVATION, EDUCATION, AND TOURISM, IAC-24-E5,5,10, 75th International Astronautical Congress (IAC), Milan, Italy, 2024, 14-18 October.
- [91] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF RAMEN EATEN IN SPACE, IAC-25-B3,IP,21,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [92] Taichi Yamazaki, Taiko Kawakami, THE POTENTIAL OF SPACE NFTS, IAC-25-E3,IP,15,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [93] Taichi Yamazaki, Taiko Kawakami, UNIFORMS FOR PRIVATE SPACEFLIGHT MISSION COMMANDERS AND SPACE FLIGHT ATTENDANTS, IAC-25-B3,IP,22,76th

- International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [94] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT AND EXPANSION OF NEW BEVERAGES FOR THE COMMERCIAL SPACE TRAVEL ERA, IAC-25-E6,IP,39,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [95] Taichi Yamazaki, Taiko Kawakami, A VERSATILE SPACE APPLICATION TOOL TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX U2U, IAC-25-D2,IP,25,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [96] Taichi Yamazaki, Taiko Kawakami, A SPACE VALUE STANDARD TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX VALUE, IAC-25-IP,6,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [97] Taichi Yamazaki, Taiko Kawakami, DEVELOPMENT OF ASTRAX SPACE MISSION SUPPORT CONTROL CENTER 2025, IAC-25-B3,4-B6.4,15,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [98] Taiko Kawakami, Taichi Yamazaki, ASTRAX LUNAR CITY PROJECT 2025, IAC-25-D4,2,12,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [99] Taiko Kawakami, Taichi Yamazaki, CONSTRUCTION PLAN OF ASTRAX LUNAR CITY SIMULATION FACILITY IN JAPAN 2025, IAC-25-E5,IP,21,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [100] Hikaru Otsuka, Taichi Yamazaki, IMPLEMENTING A RURAL REVITALIZATION PROJECT TO TURN MY HOMETOWN, KOMONO TOWN, INTO A 'SPACE TOWN', IAC-25-E1,9,12,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [101] Ayako Kurono, Haruto Kurono, Taichi Yamazaki, WHO GOVERNS SPACE MUSEUMS? LEGAL AND POLICY CHALLENGES IN THE NEW SPACE ERA, IAC-25-E5,5,9,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.
- [102] Taiko Kawakami, Taichi Yamazaki, ESTABLISHING A CULTURE OF DRINKING IN SPACE: REALIZING A BEER EXPERIENCE IN SPACE EQUIVALENT TO THAT ON EARTH, IAC-25-E1,9,18,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.

[103] Taichi Yamazaki, Taiko Kawakami, SPACE BUSINESS DEVELOPMENT EDUCATION AND TRAINING ACADEMY: ASTRAX ACADEMY 2025, IAC-25-E1,LBA,9,76th International Astronautical Congress (IAC 2025), Sydney, Australia, 29 Sep-3 Oct 2025.

IAC-25-B3.4-B6.4.12 (x101592)

ASTRAX 民間宇宙船運用支援管制センターの開発 2025

Taichi Yamazakia*, Taiko Kawakamib

a CEO and Astronaut, ASTRAX, Inc., 2-23-17 Komachi, Kamakura, Kanagawa, 248-0006, Japan, taichi.yamazaki@astrax.space
 b General Manager, ASTRAX, Inc., 1-1-4-301 Mukogaoka, Bunkyo, Tokyo, Japan 113-0023, taiko.kawakami@astrax.space
 * Corresponding Author

Abstract

ASTRAX has built a new third-generation ASTRAX Space Mission Support Control Center to support the missions that customers carry out on board private spacecraft during space flights in preparation for the arrival of the era of private space travel. This control center is a modified American-made camper "Airstream 345" and is mobile.

This control center can provide mission support in conjunction with various commercial spacecraft education and training simulators owned by ASTRAX when space travelers conduct ground training and pre-rehearsals for various space missions. In addition, half of the center is also a space life training facility, allowing them to experience a long-term stay at a commercial space base.

This paper presents an overview of the mobile civilian spacecraft operations support control center newly constructed by ASTRAX, focusing on the space habitation education and training facility co-located in its rear section, along with its potential future applications.

Keywords: mission support, mission support control center, space habitation, education and training, commercial spaceflight, Space Habitat Training Facility

アブストラクト

ASTRAXでは、民間宇宙旅行時代の到来に向けて、民間宇宙船による宇宙飛行において、顧客が宇宙船内で実施するミッションをサポートするために、新たに三世代目となる民間宇宙船運用支援管制センターを構築した。本管制センターは米国製のキャンピングカー「エアストリーム345」を改造したものであり、移動も可能である。

この管制センターは、宇宙旅行者によるさまざまな宇宙ミッションの地上訓練や事前リハーサルを行う際、ASTRAXが所有する様々な民間宇宙船教育訓練シミュレーターと連動して、ミッションサポートを行うことができる。また、センターの後方半分は宇宙居住教育訓練施設になっており、長期の民間宇宙基地などに滞在を模擬した体験をすることができるようになっている。

本論文では、ASTRAX が新たに構築したこの移動型民間宇宙船運用支援管制センターのうち、後方部分に併設されている宇宙居住教育訓練施設を中心に、その概要と、今後の利用の可能性などについて発表を行う。

キーワード:ミッションサポート、運用支援管制センター、宇宙居住、教育訓練、民間宇宙飛行

1. はじめに

2021 年に民間企業による宇宙旅行サービスが開始され、世界各国の様々な立場の人々が宇宙飛行を行い、様々なミッションや企画を実践している。それにより、人類の生活圏や活動領域は確実に宇宙へと広がりつつあり、その可能性もますます拡大している。

ASTRAXでは、民間宇宙旅行時代の到来に向けて、 2005年から民間人の宇宙飛行をサポートするために 様々な支援システムや教育訓練システムを構築してきた。

その中で重要な設備として、2015年から独自の運用支援管制センターを構築してきた。民間宇宙船の宇宙飛行中に顧客が宇宙船内で行う様々なミッションや企画を、宇宙船に一緒に搭乗している民間宇宙飛行士(ミッションコマンダー)と連携して地上からサポートするための管制センターである。

IAC-25-B3.4-B6.4.12 Page 13 of 23

第一世代、第二世代の運用支援管制センターは、建物内に設置された、移動ができない固定型の管制センターであった。固定型の管制センターにはさまざまなメリットもあるが、利用者が施設まで来ないと使えないというデメリットがあった。そこで ASTRAX の第三世代の管制センターでは、キャンピグカー内に管制システムを設置することで、移動ができるようにした。

また、運用支援管制センターの重要な機能の一つとして、長期間宿泊が可能な宇宙居住教育訓練施設が併設されている。これは、宇宙船の運用が24時間体制で行われる場合、管制スタッフがシフトを組んで交代制で対応ができるようするためである。

また同時に、宇宙での長期間の居住環境を模擬することで、ミッションの運用支援だけではなく、宇宙での生活環境についてのシミュレーションや教育訓練などができるようにしている。

本論文では、2023 年から制作してきた第三世代の 移動型民間宇宙船運用支援管制センターの全体概 要(詳細は参考文献【88】を参照)を示すとともに、宇宙 居住教育訓練施設側の詳細と、その利用の可能性な どについて解説を行う。

2. 宇宙船運用支援管制センター及び宇宙居住教育訓練施設の概要

ASTRAX の民間宇宙船運用支援管制センターは、 宇宙船運用支援管制センター(エアストリーム 345 の前 方部分)及び宇宙居住教育訓練施設(同後方部分) から構成されている。

まずは全体構成(外部構成)、内部構成、および各種機能について解説する。

2.1 全体構成(外部構成)

2.1.1 本体

ASTRAX 民間宇宙船運用支援管制センターは、米国のエアストリーム社製キャンピングカー「エアストリーム345」を利用して作られている。外観を図1,図2に示す。詳細については、参考文献【88】を参照。

図 1 ASTRAX 民間宇宙船運用支援管制センター 外観 1

図 2 ASTRAX 民間宇宙船運用支援管制センター 外観 2

2.1.2 外部との接続

(1) 電源系

本体の周りには、固定式のソーラーパネル 1 基と、ポータブルのソーラーパネルが 3 基設置されており、運用に必要な電力のほとんどは太陽エネルギーで供給している。

ただし、外部から遠隔で内部機器を制御する際に利用するインターネット設備と、非常灯と冷蔵庫は常時電源が確実に必要であるし、ソーラー発電システムに不具合があった場合などでも電源供給できるようにするため、外部電源を利用している。そのため電源ケーブルを使って、本体を外部電源と接続している。

(2) 通信系(インターネット)

高速インターネットを利用するために、外部から光ケーブルが本体に接続してある。また、2025 年に新たに追加された機能として、スターリンクが利用可能となった(スターリンクミニを利用)。

これにより、地上のインターネット光が利用できなくなった場合や、移動先でインターネットや Wi-Fi 設備がない場合でも、スターリンクシステムによる衛星インターネット通信が可能となった。

IAC-25-B3.4-B6.4.12 Page 14 of 23

(3) 環境系(水道)

施設内で利用する水(キッチン、トイレ、シャワー)は、 外部から水の供給を行うための水道ホースが接続されて いる(水は井戸水を利用)。

2.2 内部構成

本体(車内)の前半部分は運用支援管制センター(図3)、後半部分は宇宙居住教育訓練施設(図4)となっている。

図3 運用支援管制センター

図 4 宇宙居住教育訓練施設

2.2.1 運用支援管制センター(車内前方部分)の概要

車内の前方部分は、宇宙船教育訓練シミュレーターや実際の宇宙船をインターネット通信で接続して、ミッション支援を行うための管制エリアとなっている。多数のモニターと座席が2席あり、通信、モニタリング、地上からのミッション支援を行う。

また、これらの設備や機能を利用して、宇宙船の運用支援管制以外にも活用することができる。

この車内の前方部分の各設備や機能の詳細や利用例については参考文献【88】を参照。

2.2.2 宇宙居住訓練施設(車内後方部分)の概要

車内の後方部分は宇宙居住教育訓練エリアとなっている。

通常(車の固定利用時)は、運用管制センターを利用する際に24時間対応でサポートできるように、宿泊できるようになっている。また、車を移動して利用する場合にも、宿泊施設としても利用することができる。

また、宇宙での食事・睡眠・トイレ・シャワーなどのシミュレーションや、研究開発、教育訓練を行うための施設である。

2.3 役割と機能

2.3.1 設備全体の役割と機能概要

車内の設備全体の役割や機能の詳細については、 参考文献【88】を参照。

2025 年に新たに追加された機能としては、スターリンクが利用可能となり、移動先でインターネットや Wi-Fi 設備がなくても、スターリンクアンテナによる衛星通信をつかったインターネット環境の提供・利用が可能となった。

2.3.2 運用支援管制センター部分の役割と機能概要

(1) 運用支援管制センターの役割

運用支援管制センターには主に以下の役割がある。

- ①実際の宇宙飛行の際に、地上から宇宙船内の状況 を監視しながら宇宙ミッションをサポートすること
- ②民間宇宙船教育訓練シミュレーターを利用した各ミッションについての教育、訓練、シミュレーション、リハーサルを行うこと
- ③宇宙船でのミッションをサポートするオペレーションに関する体験や教育訓練を行う場
- ④宇宙船でのミッションをサポートするために必要となる 技術を研究開発する場
- ⑤ASTRAX 民間宇宙船運用支援管制センター全体 を移動させて別の場所で宇宙船の運用支援を行うため の管制センター

(2) 運用支援管制センターの機能

IAC-25-B3.4-B6.4.12 Page 15 of 23

この管制センターについて、2025 年は機能の新たな 追加は行われていないため、本論文でのあらたな記述 はない。管制センターの機能の詳細については参考文 献【88】参照のこと。

2.3.3 宇宙居住教育訓練施設の役割と機能概要

(1) 宇宙居住教育訓練施設の役割

宇宙居住教育訓練施設には主に以下の役割がある。

- ①実際の宇宙ミッションにおいて、宇宙船運用支援管制センターを利用する際の 24 時間体制での監視・サポートするための滞在施設
- ②宇宙船運用支援管制センターを利用する際、24 時間体制でミッションを監視・サポートするための教育、訓練、シミュレーション、リハーサルを行うための滞在施設
- ③宇宙での生活体験や教育訓練する場
- ④宇宙で生活するために必要となる技術を研究開発 する場
- ⑤ASTRAX 民間宇宙船運用支援センター全体を移動させて別の場所で使用する場合の宿泊施設

(2) 宇宙居住教育訓練施設の機能

宇宙居住教育訓練施設の機能については、3 項に詳しくまとめる。

3. 宇宙居住教育訓練施設について

宇宙居住教育訓練施設には以下のような設備がある。

3.1 作業エリア

作業空間には折りたたみ式のテーブルと、最大 4 名が 座れる対面式ベンチシートが設置されている (図 5)。通 常は、仕事や作業をするテーブルとして利用するとともに、 食事を行う際も利用する。

テーブルを取り外して天板の位置を下げて、クッションマットを敷けば、ベッドにすることもできる。

図5作業エリア

3.2 キッチンエリア

キッチンエリアでは、水道 1 口(冷水・温水)、シンク(小型のものが 2 個)、炊飯器、電気コンロ、電気ポット、冷蔵庫などが利用可能(図 6)。

図 6 キッチン

3.3 トイレ

現状は通常の水栓トイレであるが(図 7)、今後宇宙 用トイレを設置する予定である。宇宙用トイレの開発に ついては参考文献【56】【77】を参照。

IAC-25-B3.4-B6.4.12 Page 16 of 23

図 7トイレ

3.4 シャワールーム

現状は通常のシャワーとなっているが (図 8)、今後宇宙用シャワーに改良する予定である。宇宙用シャワーの開発については参考文献【49】を参照。

図8シャワー

3.5 寝室エリア

クイーンサイズのベッドが設置されており、最大 2 名が 就寝可能。現状は通常の地上用のベッドが設置されて いるが(図9)、今後、宇宙用の寝室(寝具)の開発に利用していく予定である。

またこのエリアには、大型ポータブルバッテリー4 基が設置されており(コントロール可能な蓄電池2基、エクストラバッテリー2基)、外部にあるソーラーパネルによって発電された電力が蓄電され、施設内の各機器に電力を供給している。

このエリアには家庭用エアコンも設置されており、上記に示す蓄電池より電力供給されている。またインターネット及びアレクサを通じて外部からエアコンを制御することも可能である。

図9寝室エリア

3.6 収納スペース

各所に収納スペースがあり、衣服や食料品、食器や 日用品、工具など、さまざまなものを収納しておくことが できる。

3.7 電力供給

施設内の設備については、基本的には4基の蓄電池から電力供給されているが、常時電源が確実に必要な非常灯、冷蔵庫、インターネット設備(外部から制御するために必要)、及び使用時に瞬間的に大きな電力を要する電気ポット、電気コンロ、電子レンジ、炊飯器については、普段は蓄電池ではなく外部電源を利用している。

施設全体が移動する時には、電力会社からの電源 供給以外に、太陽光パネルと蓄電池を利用して電力 供給できるため、どこに移動しても利用することができる。

3.8 インターネット

施設内にはインターネット光回線及びルーターが設置されており、Wi-Fiも使用可能である。

IAC-25-B3.4-B6.4.12 Page 17 of 23

また、2025 年に新たに追加された機能としては、スターリンクが利用可能となり、移動先でインターネット回線がなくても、スターリンクアンテナによる衛星通信をつかったインターネット環境の提供・利用が可能となった。

3.9 音声制御系(アレクサ)

施設内の機器の大部分は、Amazon 社製のアレクサや関連機器の機能を利用して、音声で制御できるようになっている。またアレクサのカメラ機能により施設内部の状況を外部からモニターできるようになっている。2025年にアレクサが2台追加されたことにより、モニターできる範囲が広がった。

4. 今後の利用計画と改良計画

以下に、今後想定される利用計画と改良計画を示す。

4.1 利用計画

4.1.1 宇宙飛行に関わる利用計画

- (1) 民間宇宙飛行前の訓練プログラム
- (2) 民間宇宙飛行前のシミュレーションやリハーサル
- (3) 民間宇宙船教育訓練シミュレーターとの連動した居住訓練
- (4) 民間宇宙旅行者向けの心理的・身体的サポート
- (5) さまざまな宇宙居住教育訓練体験企画を作成し、 教育訓練プログラムを実施(ASTRAX ACADEMY の 教育訓練プログラムの一環)
- (6) 宇宙居住模擬体験プログラム(一般向け教育)
- (7) 近隣の学校や教育機関とのタイアップした教育訓練プログラム
- (8) 移動させて、別な場所での宇宙居住教育訓練を実施 など

4.1.2 宇宙飛行以外の利用計画

- (1) モバイルコントロールセンターとして機能拡張(国内外移動、イベント・教育利用)
- (2) 他の移動型施設との連携
- (3) 研究利用(人間工学・生活科学の実験や研究)
- (4) 災害時のモバイル支援基地・臨時完成センターとしての利用
- (5) 災害時避難所生活を模擬した教育訓練プログラム
- (6) 実際の無重力飛行サービスとの連携企画
- (7) 国際展開(海外イベントやパートナー企業とのコラボ)

- (8) 将来の月面・火星基地支援管制システムへの発展 的応用
- (9) 地方での宇宙教育イベントへの活用
- (10)他の宇宙関連企業によるミッションとの連携など

4.2 改良計画

4.2.1 宇宙船運用支援管制センターの改良計画

本施設内の物理的な管制センターだけでなく、スマートフォンやタブレットを使った運用支援管制やオンラインによる運用支援管制が行える仕組みを構築し、本施設と連動できるようにすることで、さらに機動性や拡張性が広がると考えている。

4.2.2 宇宙居住教育訓練施設の改良計画

- (1) トイレについて、ASTRAX で開発中の宇宙トイレを 設置して利用できるようにする
- (2) シャワーについて、無重力状態でも利用できるシャワーの研究や開発を行うために利用する
- (3) バッテリーを増強し、外部電源に全く依存しないで完全に独立した状態で利用できるようにする

5. 結論

移動型の ASTRAX 民間宇宙船運用支援管制センターは、民間宇宙旅行の普及において柔軟かつ実用的なミッション支援基盤となるだろう。

また、今後「宇宙旅行の標準インフラ」としてだけでなく、「地上における災害時の標準インフラ」としても、社会的に大きな役割を果たすことができるだろう。

ASTRAX はこれからも、本施設を含むさまざまな施設、設備、技術を利用して、民間宇宙開拓の促進に貢献していくとともに、宇宙での生活と地球での生活のどちらも気軽に自由に快適に楽しく行えるようにするための技術開発と人材育成を行なっていく予定である。

参考文献

学会/国際会議論文

【1】民間商業宇宙飛行士と新規宇宙ビジネスの展開 について

IAC-25-B3.4-B6.4.12 Page 18 of 23

- [2] Overview Of ASTRAX Space Services Including Over 50 Space Businesses,
- 50 以上の宇宙事業を含む ASTRAX の宇宙事業の概要
- 【3】 ASTRAX Zero Gravity Flight Services In Japan, 日本における ASTRAX 無重力飛行サービス
- 【4】 ASTRAX Lunar City Development Project, ASTRAX 月面都市開発プロジェクト
- 【5】 ASTRAX Space Services Platform By Using Blockchain Technology, ブロックチェーン技術を活用したアストラックス宇宙サービスプラットフォーム
- [6] ASTRAX Universal Service Platform By Using Blockchain Technology,

ブロックチェーン技術を活用した ASTRAX のユニバーサルサービスプラットフォーム

- [7] Mission Control Center to Support Commercial Space Missions and Passenger's Activities Inside of The Cabin,
- 商業宇宙ミッションと乗客の機内活動を支援するミッショ ンコントロールセンター
- 【8】 ASTRAX Academy and Space Business and Space Flight Support Educational System, ASTRAX ACADEMY と宇宙ビジネス・宇宙飛行支援教育システム
- [9] Mission Support Control Center and Suborbital Spacecraft Simulator to Support Commercial Space Missions And Customer Activities,

商業宇宙ミッションと顧客活動を支援するミッション支援 管制センターとサブオービタル宇宙船シミュレータ

- [10] Zero G-Naut and Mission Commander to Support Commercial Space Missions and Customer Activities inside Cabin,
- Zero G-Nautと商業宇宙ミッションと顧客活動を支援するミッションコマンダー(船内)
- 【11】"Space Scooter": Space Mobility System Used in Space Hotels and Space Stations, 「スペーススクーター」宇宙ホテルや宇宙ステーションで使
- 「スペーススクーター」宇宙ホテルや宇宙ステーションで使 用される宇宙移動システム
- [12] ASTRAX Lunar City Development Project 2020.

ASTRAX 月面都市開発プロジェクト 2020

- 【13】 ASTRAX Lunar City Economic System by Using Blockchain Technology, ブロックチェーン技術を活用した ASTRAX 月面都市経済システム
- 【14】 ASTRAX Space Service Catalog System for Space Tourism, 宇宙旅行のための ASTRAX 宇宙サービスカタログシステム
- 【15】 ASTRAX Universal Service Platform by Using Blockchain Technology, ブロックチェーン技術を活用した ASTRAX ユニバーサルサービスプラットフォーム
- [16] Experience and Lessons Leaned from the Covid-19 Problem in Japan and Application to Space Travel.

日本の COVID-19 問題から得た経験と教訓、そして宇宙旅行への適用

- [17] Zero-G-Naut and Mission Commander to Support Commercial Space Mission and Customer Activities Inside Cabin,
- ゼロ G 飛行士とミッションコマンダーが、商業宇宙ミッションと顧客活動を機内でサポートする
- 【18】 Creating A New Business of Space Flight Attendant Service & SFA Academy, スペースフライトアテンダントと SFA アカデミーという新しい ビジネスの創出
- 【19】 The Importance of Kimono in Space, 宇宙での着物の重要性
- 【20】 What Women Need For Space Travel, 女性が宇宙へ行くために必要なこと
- 【21】 人工衛星を使用した宇宙時代の平和思考と社会経済学(ワンスマイルファンデーションシステム)
- 【22】 最新型宇宙サービスアクセスアプリケーションツール「ASTRAX U2U (Universal User Interface)」
- 【23】ASTRAX Lunar City Development Project 2021 ASTRAX 月面シティ開拓プロジェクト 2021
- 【24】Commercial Space Mission Support Control Center and Suborbital Spacecraft Simulator to Support Commercial Space Missions and Passengers Activities in Space

IAC-25-B3.4-B6.4.12 Page 19 of 23

商業宇宙ミッションと宇宙での搭乗者の活動をサポート するための商業宇宙運用支援管制センターとサブオービ タル宇宙船シミュレーター

【25】Initiative of development of the Solar System Economic Bloc by Using Blockchain Technology ブロックチェーン技術を活用した太陽系経済圏構築構想

[26] Space Fashion and Space Culture in the Age of Space Travel and the Possibilities of "Space Hagoromo"

宇宙旅行時代の宇宙ファッションと宇宙カルチャー及び "宇宙羽衣"の可能性

[27] Making ASTRAX ACADEMY Online and Multilingual,

「ASTRAX ACADEMY」のオンライン化と多言語化

【28】Potential Future Plan of Space Izakaya as a Place to Create New Private Space Business, 新たた民間字中ビジスでは、アの字中民活民

新たな民間宇宙ビジネス創出の場としての宇宙居酒屋 の将来性

【29】Fostering Universal Human Resources and Super Newtypes for the Space Age, ユニバーサル人材の育成と宇宙時代のスーパーニュータイプの養成

【30】Demand and Supply Matching by the ASTRAX LUNAR CITY Business Community and Residence Club

ASTRAX 月面シティのビジネスコミュニティとレジデンスクラブによる需要と供給のマッチング

【31】Outline of ASTRAX Private Space Business Creation Education and Training Center, ASTRAX 民間宇宙事業創出教育訓練センターの概要

【32】Prototype plans for various commercial spacecraft training simulators, さまざまな民間商用宇宙船訓練用シミュレータの試作計画

[33] Experiments on Coloring Soap Bubbles under Microgravity,

微小重力下でのシャボン玉の着色に関する実験

[34] Study of the selection of location for commercial spaceports in Japan,

日本における商業宇宙港の立地選定に関する研究

【35】Space Radiation Shielding by Water Dome in ASTRAX Lunar City on the Moon, ASTRAX 月面シティのウォータードームによる宇宙放射線の遮蔽

【36】Introduction of a practical example of ASTRAX Lunar City mapping with Minecraft and its linkage to Economic Activities on Earth, マインクラフトを使った ASTRAX 月面シティのマッピングの実践例と地球上の経済活動との連携の紹介

【37】Development of a Civilian Spacecraft Interior Simulator Using Minecraft, マインクラフトを用いた民間宇宙船内部シミュレーターの 開発

【38】Proposal to Add a Space Economics
Subcommittee to the UN Office for Outer Space
Affairs' Committee on the Peaceful Uses of Outer
Space(COPUOS in UNOOSA),
国連宇宙局の「宇宙空間の平和利用に関する委員会
J(COPUOS in UNOOSA)に「宇宙経済小委員会」を
追加する提案

【39】The Gender Gap and Its Impact in Manga, Anime and Other Space Creations, マンガ・アニメなどの空間演出におけるジェンダー・ギャップ とその影響

【40】Career Design in Space - From Challenged to Challenging, 宇宙でのキャリアデザイン - 挑戦者から挑戦者へ

【41】The Effects of Using Minecraft to Teach Children about Space, マインクラフトを使って子どもたちに宇宙を教える効果

【42】Maintaining the Health of Pilots and Crew, パイロットとクルーの健康維持

【43】Consideration on the Creation of a Chicken Egg Market at the Moon Village, 月面ビレッジでの鶏卵市場の創設についての検討

【44】Consideration of the future prospects of the Space Flight Attendant (SFA) profession with the expansion of space travel marketing, 宇宙旅行マーケティングの拡大に伴うスペースフライトアテンダント(SFA)という職業の将来性についての考察

IAC-25-B3.4-B6.4.12 Page 20 of 23

- 【45】Problems and Solutions that are Preventing More Women from Becoming Space Tourists, 宇宙旅行者になる一般女性を増やすことを妨げている問題点と解決方法
- [46] Development of a Teripper for intra-spacecraft transportation,

宇宙船内移動用テリッパの開発

- 【47】Possibility of Zero-Gravity Flight Service by MRJ (Mitsubishi Regional Jet), MRJ による無重力飛行サービスの可能性
- 【48】Development of ASTRAX commercial spacecraft education and training simulator, ASTRAX 民間宇宙船教育訓練シミュレーターの開発
- 【49】Development of Space Shower, 宇宙シャワーの開発
- [50] Production of space suits and replicas for space travel,

宇宙旅行のための宇宙服とレプリカの製作

- 【51】ADVANCED SPACE SERVICE ACCESS APPLICATION TOOL "ASTRAX UNIVERSAL USER INTERFACE (ASTRAX U2U)", 先進の宇宙サービス利用アプリケーションツール「 ASTRAX Universal User Interface (ASTRAX U2U)」
- 【52】ASTRAX Solar System Economic Bloc Concept using NFT and Metaverse Technologies, NFT とメタバース技術による ASTRAX 太陽系経済圏 構想
- 【53】Development of a Real-life (Analog) ASTRAX Lunar City Construction Project in Japan, 日本におけるリアル(アナログ) ASTRAX 月面シティ構築 計画
- 【54】Multilingualization of ASTRAX ACADEMY, ASTRAX ACADEMY の多言語化
- 【55】Possibility of zero-gravity flight and space flight by people with disabilities, 障がい者による無重力飛行と宇宙飛行における可能

【56】Development of Space Toilet "Space BENKING" in Japan, 宇宙用トイレ「宇宙ベンキング」の開発

- 【57】Disaster prevention and evacuation technologies on Earth and their application to space travel, 地球上の防災・避難生活技術と宇宙旅行への応用
- 【58】Cleaning Methods for Reusing Clothes in Space, 宇宙で衣類を再利用するための洗浄方法
- 【59】How to Go to Space with Different Hairstyles, さまざまなヘアスタイルで宇宙へ行く方法
- 【60】Research on Psychological Changes and Growth of Children through Education Related to Commercial Space Business, 商業宇宙事業に関連した教育による子どもの心理的変化・成長に関する研究
- 【61】What do they need for a space museum?, 宇宙ミュージアムに必要なものは?
- [62] Establishment and development of a lunar community and activity space by children for children,

子どもによる子どものための月面コミュニティ・活動空間 の構築と発展

- 【63】video editing services for space travellers, 宇宙旅行者のためのビデオ編集サービス
- 【64】technologies on a transparent restroom could be used for lunar habitats, 透明なトイレの技術は、月面基地にも応用できる
- 【65】ASTRAX Lunar City Project 2022, ASTRAX 月面シティプロジェクト 2022
- 【66】The need for a space version of hand signals, a communication tool for space travelers, 宇宙旅行者のコミュニケーションツール、宇宙版ハンドシグナルの必要性
- [67] Photography services and techniques required for space travel,

宇宙旅行に必要な写真撮影サービス・技術

- [68] On images of the universe influenced by manga and anime,
- マンガやアニメの影響を受けた宇宙像について
- [69] A space education program to solve the shortage of commercial space teachers in Japanese schools,

IAC-25-B3.4-B6.4.12 Page 21 of 23

日本の学校における民間宇宙講師不足を解消するための宇宙教育プログラム

[70] How to capture the cosmic diversity that is coming,

これからやってくる宇宙の多様性をどう捉えるか

[71] The Role of Space Flight Attendants in Large, Long-duration Space Travel,

大規模・長期間の宇宙旅行におけるスペースフライトア テンダントの役割

【72】Proposal for a business model that enables and encourages older adults to travel to space, 高齢者の宇宙旅行を実現・促進するビジネスモデルの提案

【73】Development of ASTRAX Zero Gravity Aircraft Education and Training Simulator ASTRAX 無重力飛行機教育訓練シミュレーターの開発

【74】Developing technology for drinking chilled carbonated beverages in space 宇宙で炭酸飲料を飲むための技術開発

【75】Development of commercial spacecraft education and training simulator using the Metaverse メタバースを利用した民間宇宙船教育訓練シミュレーターの開発

【76】Construction plan of ASTRAX LUNAR CITY Simulation Facility in Japan 日本における ASTRAX 月面シティシミュレーション施設の構築計画

【77】Development of the space toilet called "Space Benking" 2023 宇宙用トイレ「宇宙ベンキング」の開発 2023

【78】Introduction of commercial space R&D center "ASTRAX LAB" in Japan 日本における民間字束関発センカー「ASTRAY」AE

日本における民間宇宙開発センター「ASTRAX LAB (アストラックスラボ)」の紹介

[79] Analysis of passengers' needs and demands of ASTRAX Zero Gravity Services and application for space travel services

無重力飛行サービスに対する乗客のニーズ・要望の分析と宇宙旅行サービスへの応用

[80] The senses and creativity that can be achieved by bringing entertainment in space

宇宙空間でエンターテイメントを実現することで得られる 感覚と創造性

[81] Technology, problems and solutions for drinking alcohol in space

宇宙空間でお酒を飲む際に必要な技術と問題点および解決方法

[82] Technology, problems, and solutions for space travel meals as represented by "yakitori", grilled chicken

焼き鳥に代表される宇宙旅行での食事に必要な技術 と問題点および解決方法

【83】The Possibility of Developing Japanese Culture through "NATTO" in Space 宇宙空間における納豆を通した日本文化の展開の可能性

【84】Local revitalization project to turn my hometown, Komono Town, into "space town" 故郷の菰野町を「宇宙の町」にする地方活性化プロジェクト

【85】Methods and Practices for Introducing Private Space Education Programs into Japanese Schools, 民間宇宙教育プログラムを日本の学校現場に導入する 方法と実践

【86】Astrology in the Space Age: What will happen to the horoscopes of those born on the Moon? 宇宙時代における占星術 月生まれの人のホロスコープ はどうなるの?

【87】COMMERCIAL SPACE SUIT R&D CENTER "ASTRAX WAER LAB" 2024, 民間宇宙服研究開発センター『ASTRAX WEAR LAB』の概要 2024

【88】DEVELOPMENT OF ASTRAX COMMERCIAL SPACECRAFT MISSION SUPPORT CONTROL CENTER IN JAPAN 2024, ASTRAX 民間宇宙船運用支援管制センターの開発 2024

[89] ASTRAX LUNAR CITY SIMULATION FACILITY CONSTRUCTION PLAN IN JAPAN 2024,

日本における ASTRAX 月面シティシミュレーション施設 の構築 2024

IAC-25-B3.4-B6.4.12 Page 22 of 23

【90】EXPLORING THE CONCEPT AND POTENTIAL OF SPACE MUSEUMS FOR PRESERVATION, EDUCATION, AND TOURISM, 保存、教育、観光のための宇宙博物館のコンセプトと可能性を探る

【91】DEVELOPMENT OF RAMEN EATEN IN SPACE,

宇宙で食べるラーメンの開発

【92】THE POTENTIAL OF SPACE NFTS, 宇宙 NFT の可能性

【93】UNIFORMS FOR PRIVATE SPACEFLIGHT MISSION COMMANDERS AND SPACE FLIGHT ATTENDANTS.

民間宇宙飛行士ミッションコマンダーや宇宙フライトアテンダントの制服

【94】DEVELOPMENT AND EXPANSION OF NEW BEVERAGES FOR THE COMMERCIAL SPACE TRAVEL ERA, 民間宇宙旅行時代の新たな飲料開発と展開

[95] A VERSATILE SPACE APPLICATION TOOL TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX U2U,

宇宙での生活をサポートするための万能宇宙アプリケーションツール: ASTRAX U2U(Universal User Interface) の紹介

[96] A SPACE VALUE STANDARD TO SUPPORT LIFE IN SPACE: INTRODUCTION TO ASTRAX VALUE.

宇宙での生活をサポートするための宇宙価値基準: ASTRAX VALUE の紹介

【97】DEVELOPMENT OF ASTRAX SPACE MISSION SUPPORT CONTROL CENTER 2025ASTRAX 民間宇宙船運用支援管制センターの 開発 2025

【98】ASTRAX LUNAR CITY PROJECT 2025ASTRAX, 月面シティプロジェクト 2025

【99】CONSTRUCTION PLAN OF ASTRAX LUNAR CITY SIMULATION FACILITY IN JAPAN 2025, 日本における ASTRAX 月面シティシミュレーション施設 の構築 2025 【100】IMPLEMENTING A RURAL REVITALIZATION PROJECT TO TURN MY HOMETOWN, KOMONO TOWN, INTO A 'SPACE TOWN',

故郷・菰野町を「宇宙のまち」に変える地域活性化プロジェクトの実施

【101】WHO GOVERNS SPACE MUSEUMS? LEGAL AND POLICY CHALLENGES IN THE NEW SPACE ERA,

宇宙ミュージアムは誰が管理するのか?新たな宇宙時代における法的・政策的課題

[102] ESTABLISHING A CULTURE OF DRINKING IN SPACE: REALIZING A BEER EXPERIENCE IN SPACE EQUIVALENT TO THAT ON EARTH,

宇宙での飲酒文化の確立:地上と変わらないビール体験を宇宙で実現する

[103] SPACE BUSINESS DEVELOPMENT EDUCATION AND TRAINING ACADEMY: ASTRAX ACADEMY 2025,

民間宇宙事業創造教育訓練機関 ASTRAX ACADEMY について 2025

IAC-25-B3.4-B6.4.12 Page 23 of 23